
The FPA10 (floating point accelerator) is a single chip floating point coprocessor for ARM CPUs. It
implements a subset of the ARM floating point instruction set in hardware with the remaining instructions
being supported by software emulation. The combination of FPA10 hardware and support software forms
an IEEE 754-1985 conformant system.

Fully IEEE 754 conformant

Fully static operation
ideal for power sensitive applications

25 MHz clock operation

Low power consumption
2.5mA/MHz
High performance RISC design
(up to 5 MFLOPS)

Supports single, double and extended
precision IEEE formats

IEEE 1149.1 Boundary scan
for simplified system debug

68-pin PLCC package

Software emulator available

Applications
The FPA10 will significantly enhance the performance of an ARM-based system when running floating-
point intensive programs. It offers good performance from a power efficient device, for the following
applications:

Computing - e.g. workstations and high performance portables.
Scientific and Engineering - e.g. Finite Element Analysis.
CAD - e.g. ray tracing, Gourard shading.
Office Automation - e.g. relational databases, spreadsheets.

Note

In relation to IEEE 754-1985, the FPA achieves conformance in single- precision
arithmetic and has an accuracy of plus or minus 2 units in the least significant place
of the mantissa in double or extended precision arithmetic.

Single precision multiplications will always give a correct answer to absolute
accuracy according to the IEEE 754-1985 standard.

Occasionally, double- and extended-precision multiplications may be produced
with an error of 1 or 2 units in the least significant place of the mantissa.

Change Log 	Issue 	Date 	By 	 Change

I 	 11 June 93 PLH/PM 	Minor changes

ARM FPA10 Data Sheet

Contents

1 Introduction 	 1
1.1 Coprocessor Interface 	 1
1.2 Instruction Issuer 	 2
1.3 The Load-Store Unit 	 2
1.4 The Register Bank 	 2
1.5 The Arithmetic Unit 	 2

2 Block Diagram 	 3

3 Functional Diagram 	 4

4 Description of Signals 	 5

5 Programmer's Model 	 7
5.1 ARM Integer and Floating Point Number Formats 	 8

5.1.1 Integer 	 8
5.1.2 IEEE Single Precision (S) 	 8
5.1.3 IEEE Double Precision (D) 	 9
5.1.4 IEEE Double Extended Precision (E) 	 9
5.1.5 Packed Decimal (P) 	 10
5.1.6 Expanded Packed Decimal (EP) 	 11

5.2 The Floating Point Status Register (FPSR) 	 12
5.2.1 System ID Byte 	 12
5.2.2 Exception Trap Enable Byte 	 13
5.23 System Control Byte 	 13

5.2.3.1 ND - No Denormalised Numbers Bit 	 13
5.2.3.2 NE - NaN Exception Bit 	 13
5.2.3.3 SO - Select Synchronous Operation of FPA 	 14
5.2.3.4 EP - Use Expanded Packed Decimal Format 	 14
5.2.3.5 AC - Use Alternative definition for C-flag 	 14

5.2.4 Exception Flags Byte 	 14
5.2.4.1 10 - Invalid Operation 	 15
5.2.4.2 DZ - Division by zero 	 15
5.2.4.3 OF - Overflow 	 15
5.2.4.4 OF - Underflow 	 15
5.2.4.5 IX - Inexact 	 16

5.3 The Floating Point Control Register (FPCR) 	 16

6 Floating Point Instruction Set 	 18

6.1 Co-Processor Data Transfer 	 18
6.1.1 LDF/STF - Load and Store Floating 	 18
6.1.2 Load and Store Multiple Floating Instructions 	 20

6.2 Co-Processor Data Operations 	 23

6.3 Co-Processor Register Transfer 	 25
6.3.1 Compare Operations 	 26

7 FPA10 Instruction Repertoire 	 28
7.1 Instructions implemented in FPA10 	 28
7.2 Instructions supported by software support code (FPASC) 	 29

8 Floating Point Support Code 	 31

8.1 IEEE Standard ConformCance 	 31

9 Instruction Cycle Timing 	 32
9.1 Performance Tuning 	 34

10 Boundary-Scan Test Interface 	 35

10.1 Overview 	 35
10.2 Reset 	 35
10.3 Instruction Register 	 38
10.4 Public Instructions 	 38

10.4.1 BYPASS (1111) 	 38
10.4.2 SAMPLE/PRELOAD (0011) 	 38
10.4.3 EXTEST (0000) 	 39
10.4.4 INTEST (1100) 	 39
10.45 IDCODE (1110) 	 40
10.4.6 HIGHZ (0111) 	 40
10.4.7 CLAMP (0101) 	 40
10.4.8 CLAMPZ (1001) 	 40

10.5 Test Data Registers 	 41
105.1 Bypass Register 	 41
10.5.2 Device Identification (ID) Code Register 	 41
10.5.3 Boundary-Scan (BS) Register 	 42

10.6 Output Enable Boundary-scan Cells 	 46
10.7 Single-step Operation 	 46
10.8 Pin information 	 46

11 DC Parameters 	 47
11.1 Absolute Maximum Ratings 	 47
11.2 Recommended DC Operating Conditions 	 48
11.3 DC Characteristics 	 49

12 AC Parameters 	 51
12.1 Test Conditions 	 51
12.2 Main FPA10 Signals 	 52
12.3 AC Characteristics 	 53
12.4 Boundary-Scan Interface Signals 	 54

13 Packaging and Pinout 	 56

14 Typical System Configuration 	 57

ARM FPA10 Data Sheet

1 Introduction

FPA10 is a floating point accelerator for the ARM family of CPUs. It has been designed so as to maximise
the performance/power, performance/cost and performance/die size ratios whilst still providing a
balanced floating point versus integer performance for ARM-based systems.

Typical performance in the range 2 to 5 MFlops is expected at a clock frequency of 25 MHz; actual
performance is dependent on the precision selected, system configuration and the degree to which the
floating point code is scheduled and otherwise optimised.

FPA10 is a single-chip floating-point coprocessor that can be used with any member of the ARM CPU
family which has a coprocessor interface. It is a fully static design and its low power consumption,
especially when in standby mode, makes it eminently suitable for portable and other power- and cost-
sensitive applications. When used in conjunction with the supplied support code, FPA10 fully implements
the IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985).

The design of the FPA10 is based on an 81-bit internal datapath, with autonomous load /store and
arithmetic units which can operate concurrently. Single, double and extended precision IEEE formats are
all supported. FPA10 achieves its high performance, whilst remaining a low cost and low power solution,
by employing RISC and other advanced design techniques. It is interfaced to the ARM CPU over a simple,
high-performance coprocessor bus. The ARM instruction pipeline is mirrored on FPA10 so that floating
point instructions can be executed directly with minimal communication overhead. Pipelining, concurrent
execution units and speculative execution are all employed to improve performance without having a great
impact on power consumption.

A RISC approach has been taken in selecting between those floating point instructions which are candidates
for implementation in the FPA10 and those which are handled by software support. The FPA10 instruction
repertoire includes only the basic operations plus compare, absolute value, round to integral value and
floating-point to integer and integer to floating-point conversions. In addition, only normalised operands
and zeros are handled in hardware; operations on denormalised numbers, infinities and NaNs are handled
by the support code. Only the inexact exception is dealt with by hardware; all other exceptions cause the
software support code to be called, whether or not the associated trap is enabled. This approach has helped
to minimise the die size whilst having a negligible effect on performance in most applications.

The FPA10 includes fully compliant IEEE 1149.1 boundary-scan. The device is implemented in 1.0um
double-level metal CMOS, contains about 130,000 transistors and is packaged in a 68-pin PLCC.

FPA10 consists of five main functional blocks, in addition to the clock and boundary-scan logic:

1.1 Coprocessor Interface
This block is responsible for arbitrating instructions with the CPU and telling the Load-Store unit when to
go ahead with data transfers.

Like ARM integer instructions, all ARM floating point instructions are conditional, obviating the need for
branches for many common constructs. If a failed condition causes an instruction already issued to the
Load-Store or Arithmetic unit to be skipped, then that instruction is cancelled and any results calculated

1

thus far are discarded. The same mechanism is used to cancel prefetched instructions if a branch is taken or
if the ARM CPU gets interrupted before an FPA instruction has been arbitrated.

1.2 Instruction Issuer
The instruction issuer is responsible for examining the incoming instruction stream and deciding whether
any instructions are candidates for issuing to either the load-store unit or the arithmetic unit. Instructions
can be selected from the fetch, decode or execute stages of the ARM pipeline follower. Data anti-
dependency hazards (write-after-write and write-after-read) are dealt with by this unit by preventing issue
until the hazard has been cleared. Instructions are issued strictly in order and only one can be issued per
cycle.

1.3 The Load-Store Unit
The load-store unit does the formatting and conversion necessary when moving data between the 32-bit
ARM databus and the 81-bit internal register format. It is also responsible for checking all input operands
and flagging any that are not normalised numbers or zero. Most subsequent operations on flagged data
cause the instruction to be passed to software which will then emulate the instruction. All internal
operations are performed to the internal 81-bit format.

1.4 The Register Bank
The register bank contains eight 81-bit dual read-access, dual write-access registers. Data dependency
hazards (read-after-write) are handled by the register control logic; read requests from either unit are
stalled until the hazard is cleared. There is also a 33-bit temporary register, used by FIX, FLT and compare
instructions to transfer intermediate results between the Load-Store Unit and the Arithmetic Unit. The
register bank also contains logic for register-forwarding, allowing the result of one calculation to be used
directly as the source for the next.

1.5 The Arithmetic Unit
The arithmetic unit has a four-stage pipeline (Prepare, Calculate, Align and Round) and can speculatively
execute instructions up to, but not including, register writeback. Writeback can only occur once the
instruction has been arbitrated with the ARM CPU. An unusual feature of the pipeline is that each of the
pipeline stages is offset by one half-cycle from the previous stage, allowing some instructions to traverse
the pipeline in 2 cycles.

The Calculate stage includes a 67-bit adder, iterative array multiplier and divide unit. Fast barrel shifters
are used for pre-alignment and post-normalisation.

Arithmetic operations are normally performed asynchronously to the ARM instruction stream so that an
instruction is arbitrated with the CPU before FPA10 has detected whether an exception will occur.
Arithmetic exceptions are therefore normally imprecise. If precise exceptions are required - for debugging
purposes, for example - then a mode bit (the SO bit in the FPSR) can be set. This forces arbitration to be
delayed until the arithmetic operation has completed, at the expense of a reduction in performance.

2

ARM FPA10 Data Sheet

2 Block Diagram

3 Functional Diagram

ARM FPA10 Data Sheet

4 Description of Signals

Signal 	I 	Pin 	I 	Type 	I 	 Description

CPD [31: 0] 	40,37-33, 	IT/0 	Coprocessor data bus. This is a bidirectional bus which is used for
30-27,25, 	 data transfers between FPA10 and the CPU (or memory), as follows:
24,21,20, 	 (a) During data transfers from FPA10 to the CPU (or memory), data is
17,16,13, 	 driven onto CPD[31:0] while CPCLK is high.
12,10-6, 	 (b) During data transfers from the CPU (or memory) to FPA10,
3-1,68,67, 	 CPD[31:0] are inputs and data must be setup to the falling edge of
64-61 	 CPCLK.

CPAOUT 	42 	0 	Coprocessor absent output. This output is normally high, but is
driven low when a floating-point instruction is being arbitrated
between ARM and the FPA. CPAOUT may be connected directly to
the CPA input of the CPU in a single coprocessor configuration. In a
multi-coprocessor configuration, the CPAOUTs must be ANDed
together to form the CPA signal. If CPA is high and nCPI is low on the
rising edge of CPCLK, then ARM will take the undefined instruction
trap. If CPA is low and remains low, ARM will busy-wait either (a)
until CPB goes low and then complete the coprocessor instruction, or
(b) until CPA goes high and then abort the instruction. CPAOUT
remains low during data transfer operations (LDF, STF, LFM or SFM)
until the last word of data is transferred.

CPBOUT 	41 	0 	Coprocessor busy output. This output is normally high, but is driven
low when a floating-point instruction is being arbitrated between
ARM and the FPA, and the FPA is ready to accept the instruction (FPA
not busy). CPBOUT maybe connected directly to the CPB input of the
CPU in a single coprocessor configuration. In a multi-coprocessor
configuration, the CPBOUTs must be ANDed together to form the
CPB signal. ARM samples CPB on the rising edge of CPCLK if nCPI is
low. CPBOUT remains low during data transfer operations (LDF, STF,
LFM or SFM) until the last word of data is transferred.

CPAIN 	 52 	IT 	Coprocessor absent input. Indicates to the FPA whether any other
coprocessor has accepted the operation which the CPU is requesting
(by asserting nCPI). In a single coprocessor system, CPAIN should be
tied high. In a multiple coprocessor system, CPAIN should be con-
nected directly to the CPA input of ARM. CPAIN is sampled on the
rising edge of CPCLK.

CPBIN 	 48 	IT 	Coprocessor busy input. Indicates to the FPA whether any other
coprocessor is busy. In a single coprocessor system, CPBIN should be
tied high. In a multiple coprocessor system, CPBIN should be con-
nected directly to the CPB input of ARM. CPBIN is sampled on the
rising edge of CPCLK.

CPCLK 	 46 	 IT 	Coprocessor clock. This is the FPA system clock and is also used for
timing CPU/FPA interactions.

Table 1: Description of Signals

5

Signal 	I 	Pin 	I 	Type 	I 	 Description

nCP I 	44 	IT 	NOT Coprocessor instruction. This input will be driven low when the
CPU wishes to execute a coprocessor instruction. nCPI changes whilst
CPCLK is low.

CPSPV 	 45 	IT 	This input reflects the mode in which the current instruction on
CPD[31:0] is being fetched by the CPU. CPSPV is high for non-user
mode fetches and low for user mode fetches. CPSPV changes when
CPCLK is high.

DBE 	 51 	IT 	Data bus enable. When this input is low, the CPD[31:0] data bus driv-
ers are put into a high impedance state. When used in an ARM600
system, DBE should be tied high.

nOPC 	 43 	IT 	NOT Opcode fetch. If nOPC is low on the rising edge of CPCLK it
indicates that an instruction will be available on CPD[31:0] when
CPCLK next falls. nOPC is held valid when CPCLK is low, and
changes when CPCLK is high.

nRESET 	49 	IT 	NOT RESET. This is a level sensitive input signal that puts the FPA
into a known initial state. It will normally be connected to the CPU
nRESET signal. nRESET must remain low for at least 5 CPCLK cycles.

TCK 	 54 	ITP 	Test clock. Clock for IEEE 1149.1 compatible boundary scan test inter-
face. TCK times all transfers on the test interface.

TDI 	 58 	ITP 	Test data input. Sampled on the rising edge of TCK.

TDO 	 53 	0 	Test data output. Changes as a result of the falling edge of TCK.

TMS 	 57 	1TP 	Test mode select. Changing the value of the signal driven into this
input causes the Test Access Port (TAP) controller to change state.
Sampled on the rising edge of TCK.

nTRST 	 59 	ITP 	NOT TEST-RESET. Used to reset the test circuitry.

nWAIT 	 50 	IT 	Not wait. If nWAIT is driven low, the internal clock that controls data
transfers to and from the FPA will be disabled (the clock to the
remainder of the FPA internal circuitry will be unaffected). This will
cause the FPA interface to wait for an integer number of CPCLK
cycles when slow memory devices are being accessed. nWAIT must
only change when CPCLK is low. nWAIT can be used in ARM6 sys-
tems; nWAIT must be tied high in ARM2 and ARM3 systems.

VDD 	 5,14,18,22, 	P 	Positive power supply. Nominally +5V.
31,38,56,66

vss 	 4,11,15,19, 	P 	Ground reference.
23,26,32,
39,47,55, 65

Table 1: Description of Signals
Key to Signal Types 	IT 	 Input with TTL thresholds

ITP 	Input with TTL thresholds and on-chip pull-up resistor
0 	 CMOS Output (slew-rate limited - 8mA drive)
P 	 Power

6

ARM FPA10 Data Sheet

5 Programmer's Model

The ARM IEEE floating point system has 8 high precision floating point registers, FO to F7. The working
precision of the system is 80 bits, comprising a 64 bit mantissa, a 15 bit exponent and a sign bit. Specific
instructions that work only with single precision operands may provide higher performance in some
implementations.

There is a floating point status register (FPSR) which, like ARM's combined PC and PSR, holds all the
necessary status and control information for the floating point system that an application should be able to
access. It holds flags which indicate various error conditions, such as overflow and division by zero. Each
flag has a corresponding trap enable bit, which can be used to enable or disable a trap associated with the
error condition. Bits in the FPSR allow a client to distinguish different implementations of the floating point
system and to enable or disable special features of the system.

FPA10 also contains a floating point control register (FPCR). This is used to communicate status and control
information between the FPA and the FPA support code. It should be noted that the definition of the FPCR
may be different for other implementations of the ARM IEEE floating point system; the FPCR may not even
exist in some implementations. Software outside the floating point system should therefore not use the
FPCR directly.

All basic floating point instructions operate as though the result were computed to infinite precision and
then rounded to the length and in the way specified by the instruction. The rounding is selectable from:

• Round to nearest

• Round to +infinity (P)

• Round to -infinity (M)

• Round to zero (Z)

The default is round to nearest: as required by the IEEE, this rounds to nearest even for the tie case. If one
of the other rounding modes is required it must be given in the instruction.

The floating point system architecture is, like ARM, "Load/Store" - the data processing operations only
refer to floating point registers. Values may be stored into ARM memory in one of five formats (only four
of which are visible at any one time since P and EP are mutually exclusive):

• IEEE Single Precision (S)

• IEEE Double Precision (D)

• IEEE Double Extended Precision (E)

• Packed Decimal (P)

• Expanded Packed Decimal (EP)

7

Note that in the past the layout of E format has varied between floating point systems, so software should
not have been written to depend on it being readable by other floating point systems. However, for the FPA
(and versions of the Floating Point Emulator (FPE) that are compatible with the FPA), the E format is now
defined to be a particular form of IEEE Double Extended Precision and will not vary in future.

If it is now required to preserve register contents exactly (including signalling NaNs), then the new LFM
and SFM instructions should be used. Note however that LFM and SFM should only be used for register
preservation within programs and not for data which is to be transferred between programs and/or
systems. The format of data stored using SFM is implementation-dependent and can generally only be
restored by an LFM instruction from the same implementation.

Floating point systems may be built from software only, hardware only, or some combination of software
and hardware and the results look the same to the programmer; however the supervising operating system
will need to be aware of which implementation is in use to extract the best performance. Similarly,
compilers can be tuned to generate bunched FP instructions for the FPE and dispersed FP instructions for
the FPA to improve overall performance. The manner in which exceptions are signalled is at the discretion
of the surrounding operating system.

Note that in the case of the FPA system, an exception caused by a floating point data operation or a FLT
may be asynchronous (due to the nature of the ARM coprocessor interface.) Such an exception is raised
some time after the instruction has started, by which time the ARM may have executed a number of
instructions following the one that has failed. This means that the exact address of the instruction that
caused the exception may not be identifiable. However, all the information about the exception that the
IEEE Standard recommends is available.

Furthermore, in the FPA a "fully synchronous, but slow" mode of operation is available that allows the
address of the faulting instruction to be determined.

Familiarity with the IEEE Standard (IEEE Standard for Binary Floating Point Arithmetic : ANSI/IEEE Std
754-1985) will be helpful in reading this datasheet.

5.1 ARM Integer and Floating Point Number Formats

5.1.1 Integer
31 	 0

msb 	 2's complement 	 lsb

5.1.2 IEEE Single Precision (S)
31 30 	23 22 	 0

sign Exponent msb Fraction 	 lsb

Normalised number exponent bias = +127 	Denormalised number exponent bias = +126

8

ARM FPA10 Data Sheet

5.1.3 IEEE Double Precision (D)
31 30 	20 19 	 0

First Word 	sign Exponent msb Fraction (ms part) 	 lsb

msb 	 Fraction (Is part) 	 lsb

Normalised number exponent bias = +1023 	Denormalised number exponent bias = +1022

Single and Double values:

I Sign I 	Exponent 	I 	Fraction 	I 	Value represented

Quiet NaN 	 x 	maximum 	lxxxxxxxxx 	 IEEE Quiet NaN

Signalling NaN 	x 	maximum 	Onon-zero 	 IEEE Signalling NaN

Infinity 	 sign 	maximum 	0000000000 	 (-1)sign * infinity.

Zero 	 sign 	0 	0000000000 	 (-1) sign * 0

Denormalised no. 	 * 2-(denorm. bias) sign 	0 	non-zero 	(-1) sig" * 0.fraction

not 0 and not 	 (-1) sign * l.fraction Normalised no. 	sign
maximum 	xxxxxxxxxx 	 * 2(exponent - norm. bias)

5.1.4 IEEE Double Extended Precision (E)

31 30 	 15 14 	 0

First Word 	sgn 	zeros 	 15 bit exponent 	lsb

Second Word 	J msb 	 Fraction (ms part) 	 lsb

Third Word 	msb 	 Fraction (Is part) 	 lsb

J is the bit to the left of the binary point.
Normalised and denormalised number exponent bias = 16383

9

Extended values:

I Sign I 	Exponent 	I J 	I 	Fraction 	I

Quiet NaN 	 x 	maximum 	x 	lxxxxxxxxx 	 IEEE Quiet NaN

Signalling NaN 	x 	maximum 	x 	Onon-zero 	 IEEE Signalling NaN

Infinity 	 sign 	maximum 	0 	0000000000 	 (-1)sign * infinity

Zero 	 sign 	0 	0 	0000000000 	 (-1)sign * 0

Denormalised nd11sign 	0 	0 	non-zero 	(-1)sign * ()fraction * 2-(denorm.bias)

Normalised no. 	sign 	not max 	1 	xxxxxxxxxx 	
(_ onn * 1.fraction

* 2(exponent - norm.bias)

** Illegal value 	x 	not 0 and not max 	0 	xxxxxxxxxx

** Illegal value 	x 	maximum 	1 	0000000000

** In general, illegal values shall not be used, although specific floating point implementations may use
these bit patterns for internal purposes.

5.1.5 Packed Decimal (P)
31 	 0

First Word 	sign 	e3 	e2 	el 	e0 	d18 	d17 	d16

Second Word 	d15 d14 d13 d12 	dll 	d10 	d9 	d8

Third Word 	d7 	d6 	d5 	d4 	d3 	d2 	dl 	dO

Value is +/- d * 10^(+/- e). d18 and e3 are the most significant digits of d and e respectively. Sign contains
both the number's sign (bit 31) and the exponent's sign (bit 30). The other bits (29,28) are 0. The value of d
is arranged with the decimal point between d18 and d17, and is normalised so that for an ordinary number
1<=d18<=9. The guaranteed ranges for d and e are 17 and 3 digits respectively: e3 and dO, dl may always
be zero in a particular system. The result is undefined if any of the packed digits is hexadecimal A through
F.

10

ARM FPA10 Data Sheet

Packed Decimal values:

Sign - top 	1 	Sign - 	next
bit 	 bit 	

Exponent 	Digit values

Quiet NaN 	 x 	 x 	FH-4-. 	d8>7, rest non-zero

Signalling NaN 	x 	 x 	F.E.H. 	d18<8, rest non-zero

+/- Infmity 	 0,1 	 x 	 1-4-1-1- 	all 0

+/- Zero 	 0,1 	 0 	 0000 	all 0

Number 	 0,1 	 0,1 	0000-9999 	1-9.999999999999999999

All other combinations are undefined.

5.1.6 Expanded Packed Decimal (EP)
31 	 0 	

First Word 	sign 	e6 	e5 	e4 	e3 	e2 	el 	e0

Second Word 	d23 d22 	d21 d20 	d19 	d18 d17 	d16

Third Word 	d15 d14 d13 d12 	d11 	d10 	d9 	d8

d7 	d6 	d5 	d4 	d3 	d2 	dl 	dO

Value is +/- d * 10^(+/- e). d23 and e6 are the most significant digits of d and e respectively. Sign contains
both the number's sign (bit 31) and the exponent's sign (bit 30). The other bits (29,28) are 0. The value of d
is arranged with the decimal point between d23 and d22, and is normalised so that for an ordinary number
l<=d23<=9. The guaranteed ranges ford and e are 2FFFF4 digits respectively: e6, e5, e4 and d2FFFFdO may
always be zero in a particular system. The result is undefined if any of the packed digits is hexadecimal A
through F.

11

Expanded Packed Decimal values:

Sign - top 	Sign - next
bit 	bit 	

Exponent 	Digit values

Quiet NaN 	 x 	 x 	141+1-•141-.1-' 	d23>7, rest non-zero

Signalling NaN 	x 	 x 	11-.1-.1-4.1-.1' 	d23<8, rest non-zero

+/- Infinity 	 0,1 	 x 	14-14-1-4-1. 	all 0

+/- Zero 	 0,1 	 0 	0000000 	all 0
	 I

Number 	 0,1 	 0,1 	0-9999999 	1-9.99999999999999999999999

All other combinations are undefined.

5.2 The Floating Point Status Register (FPSR)
The floating point status register (FPSR) consists of a system ID byte, an exception trap enable byte, a system
control byte and a cumulative exception flags byte.

Note that the FPSR is not cleared on reset. It is typically cleared by the support code using an appropriate
WFS.

5.2.1 System ID Byte
31 	 24

Sysld

System ID byte

The 8 bit Sysld allows a user or operating system to distinguish which floating point system is in use:
the top bit (bit 31) is set for HARDWARE (i.e. fast) systems, and clear for SOFTWARE (i.e. slow) systems.
Note that the Sysld is read-only.

The following Sysld's are currently defined:
Floating Point Emulator: 	01 (HEX) (Software only)
FPA10 System: 	 81 (HEX)

00(HEX) and 80(HEX) are also defined for pre-FPA10 software and hardware systems respectively.

12

ARM FPA10 Data Sheet

5.2.2 Exception Trap Enable Byte

23 22 21 20 	19 18 	17 16

Reserved IXE UFE OFE DZE IOE

Exception Trap Enable Byte

Each bit of the exception trap enable byte corresponds to one type of floating point exception. The exception
types (IX,UF,OF,DZ,IO) are described below. A bit in the cumulative exception flags byte is set as a result
of executing a floating point instruction only if the corresponding bit is not set in the exception trap enable
byte; if the corresponding bit in the exception trap enable byte is set, then an exception trap will be taken
instead of setting the exception flag. The trap handler code can then set the relevant cumulative exception
bit if desired.

Normally, reserved FPSR bits should not be altered by user code. However, they may be initialised to zero.

5.2.3 System Control Byte
15 	13 12 11 10 9 8

Reserved AC EP SO NE ND

System Control Byte

These control bits determine which features of the floating point system are in use. By placing these control
bits in the FPSR, their state will be preserved across context switches, allowing different processes to use
different features if necessary. The following five control bits are defined for the FPA system :

Bit 8: ND - No Denormalised Numbers Bit
Bit 9: NE - NaN Exception Bit
Bit 10: SO - Select Synchronous Operation of WA
Bit 11: EP- Use Expanded Packed Decimal Format
Bit 12: AC- Use Alternative definition for C-flag on compare operations

5.2.3.1 ND - No Denormalised Numbers Bit

If this bit is set, then the software will force all denormalised numbers to zero to reduce lengthy execution
times when dealing with denormalised numbers. (Also known as abrupt underflow or flush to zero.) This
mode is not IEEE compatible but may be required by some programs for performance reasons. If this bit is
clear, then denormalised numbers will be handled in the normal IEEE-conformant way.

5.2.3.2 NE - NaN Exception Bit

When this bit is clear, extended format is regarded as an internal format as far as conversions of signalling
NaNs are concerned: only conversions between single and double precision will produce an invalid
operation exception because of a signalling NaN operand. This is required for compatibility with old
programs which use STFE and LDFE to preserve register contents. When the NE bit is set, all conversions
between single, double and extended precision will produce an invalid operation exception if the operand

13

is a signalling NaN.

5.2.3.3 SO - Select Synchronous Operation of FPA

If this bit is set, then all floating point instructions will execute synchronously and ARM will be made to
busy-wait until the instruction has completed. This will allow precise exceptions to be reported but at the
expense of increased execution time. If this bit is clear, then that class of floating point instructions that can
execute asynchronously to ARM will do so. Exceptions that occur as a result of these instructions may then
be imprecise.

5.2.3.4 EP - Use Expanded Packed Decimal Format

If this bit is set, then the expanded (four word) format will be used for Packed Decimal numbers. Use of this
expanded format allows conversion from extended precision to packed decimal and back again to be
carried out without loss of accuracy. If this bit is clear, then the standard (three word) format is used for
Packed Decimal numbers.

5.2.3.5 AC - Use Alternative definition for C-flag on compare operations

If this bit is set, the ARM C-flag, after a compare, has the following interpretation:

C: Greater Than or Equal or Unordered

This interpretation of the C-flag allows more of the IEEE predicates to be tested by means of single ARM
conditional instructions than is possible using the original interpretation of the C-flag as shown below.

If this bit is clear, the ARM C-flag, after a compare, has the following interpretation:

C: Greater Than or Equal

Normally, reserved FPSR bits should not be altered by user code. However, they may be initialised to zero.

5.2.4 Exception Flags Byte
7...5 	4 	3 	2 	1 	0

Reserved IXC UFC OFC DZC IOC

Cumulative Exception Flags Byte

Whenever an exception condition arises and the corresponding trap enable bit is not set, the appropriate
cumulative exception flag in bits 0 to 4 will be set to 1. If the relevant trap enable bit is set, then an exception
is delivered to the user's program in a manner specific to the operating system. (Note that in the case of
underflow, the state of the trap enable bit determines under which conditions the underflow exception will
arise.) These flags can only be cleared by a WFS instruction.

Normally, reserved FPSR bits should not be altered by user code. However, they may be initialised to zero.

14

ARM FPA10 Data Sheet

5.2.4.1 I0 - Invalid Operation

The invalid operation exception arises when an operand is invalid for the operation to be
performed. The result (if the trap is not enabled) is a quiet NaN. Invalid operations are:

• Any operation on a signalling NaN, except an LDF, LFM or SFM, or an MVF, MNF, ABS or STF
without change of precision.

• Magnitude subtraction of infinities, e.g. +infinity + -infinity.
• Multiplication of 0 by an infinity.
• Division of 0/0 or infinity/infinity.
• x REM y where x is infinity or y is 0.
• Square root of any number less than zero (but SQT(-0) is -0).
• Conversion to integer when overflow, infinity or NaN make it impossible. If overflow makes a

conversion to integer impossible, then the largest positive or negative integer is produced
(depending on the sign of the operand) and Invalid Operation is signalled.

• CMFE, CNFE when at least one operand is a NaN.
• ACS, ASN when input absolute value is > 1.
• SIN, COS, TAN when input is infinite.
• LOG, LGN when input < 0.
• POW when first operand is < 0 and second operand is not an integer, or first operand is 0 and

second operand is <= 0.
• RPW when second operand is < 0 and first operand is not an integer, or second operand is 0 and

first operand is <= 0.

5.2.4.2 DZ - Division by zero

The division by zero exception occurs if the divisor is zero and the dividend a finite, non-zero
number. A correctly signed infinity is returned if the trap is disabled. DZC is also signalled for
LOG(0) and LGN(0) (negative infinity is returned)

5.2.4.3 OF - Overflow

The OFC flag is set whenever the destination format's largest number is exceeded in magnitude by
what would have been the rounded result were the exponent range unbounded. The untrapped
result returned is the correctly signed infinity or the format's largest finite number, depending on
the rounding mode.

5.2.4.4 OF - Underflow

Two correlated events contribute to underflow. These are:

(i) Tininess - the creation of a tiny non-zero result smaller in magnitude than the format's smallest
normalised number.

(ii) Loss of accuracy - a loss of accuracy due to denormalisation that may be greater than would be
caused by rounding alone.

If the underflow trap enable bit is set, then the underflow exception occurs when tininess is
detected regardless of loss of accuracy. If the trap is disabled, then tininess and loss of accuracy
must both be detected for the underflow flag to be set (in which case inexact will also be signalled).

15

5.2.4.5 IX - Inexact

The inexact exception occurs if the rounded result of an operation is not exact (i.e. different from
the value computable with infinite precision), overflow has occurred while the OFE trap was
disabled or underflow has occurred while the UFE trap was disabled. OFE or UFE traps take
precedence over IXE. Note that, except for special cases like SIN(0) and COS(0), all transcendental
operations are inexact.

5.3 The Floating Point Control Register (FPCR)
The Floating Point Control register (FPCR) is an implementation-specific register : it may not exist in some
versions of the ARM floating point system and, when it does exist, it may contain different information for
different versions of the system. When present, it is used for internal communication within the floating
point system and, in particular, to allow software and hardware components of the system to communicate
with each other. Use of the WFC and RFC instructions outside the floating point system itself is strongly
discouraged. In the case of User mode programs, it is actually prohibited: the WFC and RFC instructions
will trap if executed in User mode.

The FPCR exists on the FPA10. It is used to enable and disable the chip and to communicate information
about instructions the hardware cannot handle to the support code.

The FPA FPCR bit allocation is as follows:

31 30 29 28 27 26 25 24 23:20 19 18:16 15 14:12 11 10 9 8 7 6:5 4 3:0

RU . . IE MO EO.. OP PR SI OP DS SB AB RE DA PR RM OP S2

	

Bit 31 	RU 	- Rounded Up Bit

	

30 	Reserved

	

29 	Reserved

	

28 	IE 	 - Inexact bit

	

27 	MO 	- Mantissa overflow

	

26 	EO 	- Exponent overflow

	

25 	Reserved

	

24 	Reserved
23-20;15;4 OP 	- AU operation code

	

19;7 	PR 	- AU precision

	

18-16 	S1 	 - AU source register 1

	

14-12 	DS 	- AU destination register

	

11 	SB 	- Store bounce : decode (R14) to get opcode

	

10 	AB 	- Arithmetic bounce : opcode supplied in rest of word

	

9 	RE 	- Rounding Exception : Arithmetic bounce occurred during rounding stage
and destination register was written

	

8 	DA 	- Disable FPA

	

6-5 	RM 	- AU rounding mode

	

3-0 	S2 	- AU source register 2 (bit 3 set denotes a constant)

All defined bits are cleared on reset, except bits 8, 10, and 11 (DA, AB, and SB) which are set.

16

ARM FPA10 Data Sheet

Apart from by using the WFC instruction, the AB bit can only be set by the arithmetic unit and the SB bit
can only be set by the load-store unit.

Only the arithmetic unit can write bits 31, 28:26, 23:12, 9, 7:0 of the FPCR.

The behaviour of the FPCR when the RFC and WFC instructions are executed is as follows:

• A read of the FPCR by RFC clears the SB, AB and DA bits of the FPCR, and leaves the
other bits of the FPCR unchanged.

• A write of the FPCR by WFC writes the SB, AB, & DA bits of the FPCR, and leaves the
other bits of the FPCR unchanged.

Note that this information about the FPCR in FPA10 is only supplied to aid with modifications to the FPA
support code. Using it for any other purpose is likely to lead to compatibility problems and is strongly
discouraged.

17

6 Floating Point Instruction Set

Note that not all of the instructions detailed in this chapter are implemented in hardware on the FPA10; the
remainder are supported by software emulation. The details of which instructions are implemented in
hardware and which in software may be found in the next chapter. Fuller details of the generic ARM
Coprocessor instruction set may be found in the relevant ARM Datasheet; reference should be made to this
if further clarification is required.

6.1 Co-Processor Data Transfer

6.1.1 LDF/STF - Load and Store Floating

31..28 27.24 23 22 21 20 19..16 15..12 11..8 7 	0

Cond 110P U/D Y Wb L/S Rn X Fd 0001 offset

Cond - Condition field
P 	- Pre/post indexing bit (0=post; 1=pre)
U/D - Up/down bit (0=down; 1=up)
Y 	- Transfer length (see below)
Wb 	- Write-back bit
L/S 	- Load/store bit (0=store to memory; 1=load from memory)
Rn 	- Base register
X 	- Transfer length (see below)
Fd 	- Floating point register number
offset - unsigned 8 bit immediate offset

Description
Load or Store the high precision value from or to memory, using one of the five memory formats. On store
the value is rounded using the round to nearest rounding method to the destination precision, or is precise
if the destination has sufficient precision. Thus other rounding methods may be used by having applied a
suitable floating point data operation at some time before the store - this does not compromise the
requirement of rounding once only since no additional rounding error is introduced by the store
instruction.

The length field is encoded into bits 22 (Y) and 15 (X) as follows:

Precision I 	I 	Y 	I 	X 	I 	FPSR.EP 	I 	Size of data format

Single 	 S 	0 	0 	x 	 One Memory Word

Double 	 D 	0 	1 	x 	 Two Memory Words

Extended 	 E 	1 	0 	x 	 Three Memory Words

Packed Decimal 	 P 	1 	1 	0 	 Three Memory Words

Expanded Packed Decimal 	EP 	1 	1 	1 	 Four Memory Words

18

ARM FPA10 Data Sheet

The offset in bits [7:0] is specified in words and is added to (U/D=1) or subtracted from (U/D=0) a base
register (Rn), either before (P=1) or after (P=0) the base is used as the transfer address. The modified base
value may be written back into the base register (Wb=1) or the old value of the base may be preserved
(Wb=0).

Note that post-indexed addressing modes require explicit setting of the Wb bit, unlike LDR and STR which
always write-back when post-indexed. The value of the base register, modified by the offset in a pre-
indexed instruction, is used as the address for the transfer of the first word. The second word (if more than
one is transferred) will go to or come from an address one word (4 bytes) higher than the first transfer, and
the address will be incremented by one word for each subsequent transfer.

Assembler Syntax
<LDFISTF>{cond}<SIDIEIP> Fd,[Rn]

[Rn, #<expression>]{!}
[Rn],#<expression>

Pre-indexed addressing specification:

 [Rn] - offset of zero
[Rn, #<expression>[(!) - offset of <expression> bytes
(!) Write back the base register (set the Wb bit) if ! is present.

If Rn is R15, writeback should not be specified.

Post-indexed addressing specification:

[Rn],#<expression> - offset of <expression> bytes

Note that the assembler automatically sets the Wb bit in this case. R15 should not be used as the base
register where post-indexed addressing is used.

Note that the <expression> must be divisible by 4 and be in the range -1020 to 1020.

19

6.1.2 Load and Store Multiple Floating Instructions

31..28 27.24 23 22 21 	20 19..16 15..12 11 8 7 	0

[Cond 1110P I U/D I Y I Wb L/SI Rn X Fd100101 offset CPDT

Cond - Condition field
P 	- Pre/post indexing bit (0=post; 1=pre)
U/D - Up/down bit (0=down; l=up)
Y 	- Register count (see below)
Wb 	- Write-back bit
L/S 	- Load/store bit (0=store to memory; 1=load from memory)
Rn 	- Base register
X 	- Register count (see below)
Fd 	- Floating point register number offset - unsigned 8 bit immediate offset

Description
The Load/Store Multiple Floating instructions allow between 1 and 4 floating point registers to be
transferred from/to memory in a single operation. These operations allow groups of registers to be saved"
and restored efficiently (e.g. across context switches).

The values are transferred as three words of data for each register; the data format used is not defined (and
may change in future implementations), and the only legal operation that can be performed on this data is
to load it back into the FPA using the same implementation's LFM instruction. The data stored in memory
by an SFM instruction should not be used or modified by any user process.

Note that coprocessor number 2 (bits 11-8 in the instruction field) rather than the usual FPA coprocessor
number of 1 must be used for these instructions.

The offset in bits [7:01 is specified in words and is added to (U/D=1) or subtracted from (U/D=0) a base
register (Rn), either before (P=1) or after (P=0) the base is used as the transfer address. The modified base
value may be written back into the base register (Wb=1) or the old value of the base may be preserved
(Wb=0). Note that post-indexed addressing modes require explicit setting of the Wb bit, unlike LDR and
STR which always write-back when post-indexed. The value of the base register, modified by the offset in
a pre-indexed instruction, is used as the address for the transfer of the first word. The second word will go
to or come from an address one word (4 bytes) higher than the first transfer, and the address will be
incremented by one word for each subsequent transfer.

Assembler Syntax
There are two alternative forms:

(1) 	<LFMISFM>.(cond) Fd,<count>,[Rn]
[Rn, #<expression>]{!}
[Rn],#<expression>

20

ARM FPA10 Data Sheet

The first register to transfer is specified as Fd.

The number of registers to transfer is specified in the <count> field and is encoded in Y (bit 22) and X (bit
15) as follows:

Y 	I 	X 	1 	No. of registers to transfer

0 	1 	 1

1 	0 	 2

1 	1 	 3

0 	0 	 4

Registers are always transferred in ascending order and wrap around at register F7. For example:

SFM F6,4,[RO] will transfer F6,F7,F0,F1 to memory starting at the address contained in register RO.

Pre-indexed addressing specification:

[Rn] - offset of zero

[Rn, #<expression>]f!) - offset of <expression> bytes

(0 Write back the base register (set the Wb bit) if ! is present.

If Rn is R15, writeback shouRn],#<expressionied.

Post-indexed addressing specification:

[Rn[,#<expression> - offset of <expression> bytes

Note that the assembler automatically sets the Wb bit in this case. R15 should not be used as the base
register where post-indexed addressing is used.

Note that the <expression> must be divisible by 4 and be in the range -1020 to 1020.

(2) 	<LFMISFM>{cond}<FD,EA> Fd,<count>,[Rn](!)

This form of the instruction is intended for stacking type operations on the floating point registers. The
following table shows how the assembler mnemonics translate into bits in the instruction.

21

Name 	I 	Stack 	I 	L bit 	I 	P bit 	I 	U bit

post-increment load 	 LFMFD 	1 	 0 	 1

pre-decrement load 	 LFMEA 	1 	 1 	 0

post-increment store 	SFMEA 	0 	 0 	 1

pre-decrement store 	 SFMFD 	0 	 1 	 0

FD,EA define pre/post indexing and the up/down bit by reference to the form of stack required. The F and
E refer to a "full" or "empty" stack, i.e. whether a pre-index has to be done (full) before storing to the stack.
The A and D refer to whether the stack is ascending or descending. If ascending, an SFM will go up and
LFM down; if descending, vice-versa. Note that only EA and FD are permitted: the LFM/SFM instructions
are not capable of supporting empty descending or full ascending stacks.

0) Write back the base register (set the Wb bit) if ! is present.

If Rn is R15, writeback should not be specified.

22

ARM FPA10 Data Sheet

6.2 Co-Processor Data Operations

31..28 27.24 23 	20 19..16 15..12 11..8 7...4 3..0

Cond 1110 	abcd e Fn j Fd 0001 fgh0 i Fm CPDO

<ADF I SUF I RSF I MUF I DVF I RDF I POW I RPW>(cond}<S I DIE> (P I M I Z) Fd, Fn, <Fm I #value>
<RMF I FML I FDV I FRD I POL>

<MVF I MNF I ABS I RND I SQT I LOG I LGN I EXP>(cond}<S I D I E>fP I M I Z) Fd, <Fm I #value>
<SIN I COS I TAN I ASN I ACS I ATN I URD I NRM>

opcode 	 - abcd
dyadic/monadic 	- j 	(j=0 for dyadic; j=1 for monadic)
destination size 	- of
rounding mode 	- gh
constant /Fm 	- i

23

	

abcdj 	I 	I 	 I
	

	

00000 	ADF 	Add 	Fd:=Fn+Fm

	

00010 	MUF 	Multiply 	 Fd := Fn * Fm

	

00100 	SUF 	Subtract 	 Fd := Fn - Fm

	

00110 	RSF 	Reverse Subtract 	 Fd := Fm - Fn

	

01000 	DVF 	Divide 	 Fd := Fn / Fm

	

r 01010 	RDF 	Reverse Divide 	 Fd := Fm / Fn

	

01100 	POW 	Power 	 Fd := Fn raised to the power of Fm

	

01110 	RPW 	Reverse Power 	 Fd := Fm raised to the power of Fn

	

10000 	RMF 	Remainder 	 Fd := IEEE remainder of Fn / Fm

	

10010 	FML 	Fast Multiply 	 Fd := Fn * Fm

	

10100 	FDV 	r Fast Divide 	 Fd := Fn / Fm

	

10110 	FRD 	Fast Reverse Divide 	Fd := Fm / Fn

	

11000 	POL 	Polar angle (ArcTan2) 	Fd := polar angle of (Fn, Fm)

	

11010 	trap: 	undefined instruction

	

11100 	trap: 	undefined instruction

	

11110 	trap: 	undefined instruction

	

00001 	MVF 	Move 	 Fd := Fm

	

00011 	MNF 	Move Negated 	 Fd := - Fm

	

00101 	ABS 	Absolute value 	 Fd := ABS (Fm)

	

00111 	RND 	Round to integral value 	Fd := integer value of Fm

	

01001 	SQT 	Square root 	 Fd := square root of Fm

	

01011 	LOG 	Logarithm to base 10 	Fd := log io of Fm

	

01101 	LGN 	Logarithm to base e 	Fd := loge of Fm

	

01111 	EXP 	Exponent 	 Fd:=e**Fm

	

10001 	SIN 	Sine 	 Fd := sine of Fm

	

10011 	COS 	Cosine 	 Fd := cosine of Fm

	

10101 	TAN 	Tangent 	 Fd := tangent of Fm

	

10111 	ASN 	Arc Sine 	 Fd := arcsine of Fm

	

11001 	ACS 	Arc Cosine 	 Fd := arccosine of Fm

	

11011 	ATN 	Arc Tangent 	 Fd := arctangent of Fm

	

11101 	URD 	Unnormalised Round 	Fd := integer value of Fm, possibly in abnormal form

	

11111 	NRM 	Normalise 	Fd := normalised form of Fm

24

ARM FPA10 Data Sheet

of suffix Destination Rounding precision

00 S 	IEEE Single precision
01 D 	IEEE Double precision
10 E 	IEEE Double Extended precision
11 	 trap: undefined instruction

Note that the precision must be specified; there is no default.

gh suffix 	Rounding Mode

00 	 Round to Nearest (default)
01 	P 	Round towards Plus Infinity
10 	M 	Round towards Minus Infinity
11 	Z 	Round towards Zero

Constants: (specified when 1=1)

i Fm 	Value assigned
1000 	0.0
1001 	1.0
1010 	2.0
1011 	3.0
1100 	4.0
1101 	5.0
1110 	0.5
1111 	10.0

Notes:

FML, FRD, FDV are only defined to work with single precision operands. It is not guaranteed that any
particular implementation will execute the "fast" instructions any quicker than their respective "normal"
versions (MUF, DVF, RDF).

Directed rounding is done only at the last stage of a SIN, COS etc. - the intermediate calculations to compute
the value are done with round to nearest using the full working precision.

The URD instruction performs the IEEE "round to integer value" operation but may leave its result in an
abnormal unnormalised form. The NRM instruction converts this abnormal result into a proper floating
point value.

Direct use of the result of a URD instruction by any instruction other than NRM may produce unexpected
results and should therefore not be done. Exception: a URD result may safely be preserved and restored by
STFE /LDFE or SFM/LFM before being processed by NRM. So there is no need, for instance, to disable
interrupts around a URD/NRM instruction sequence.

Similarly, the NRM instruction should only be used on a URD result. Again, use of it on other values may
produce unexpected results.

25

6.3 Co-Processor Register Transfer
31..28 27.24 23 	21 20 19..16 15..12 11..8 7..4 3..0

	

I Cond 11110 I abc 	Lisle Fn Rd 1 0001 fghl i Fm CPRT

FLT{cond}<S ID IE>{P IMI Z} Fn, Rd
FIX{cond} (1) IMIZ} Rd, Fm
<WFS I RFS I WFC I RFC> { cond} Rd

L/S = 1 -> the transfer is TO an ARM register
L/S = 0 -> the transfer is FROM an ARM register

operation - abc

abcL/S
0000 	FLT 	Convert Integer to Floating Point: 	 Fn := Rd
0001 	FIX 	Convert Floating Point to Integer: 	 Rd := Fm
0010 	WFS 	Write Floating Point Status Register: 	FPSR := Rd
0011 	RFS 	Read Floating Point Status Register: 	Rd := FPSR
0100 	WFC 	Write Floating Point Control Register: 	FPCR:= Rd Note 1
0101 	RFC 	Read Floating Point Control Register: 	Rd := FPCR Note 1
011x 	trap: undefined instruction
1000 	trap: undefined instruction
1010 	trap: undefined instruction
1100 	trap: undefined instruction
1110 	trap: undefined instruction

Note 1: Supervisor Only Instructions

Definition of the efgh bits is instruction-dependent:

FLT
destination size - ef (see CPDO)
rounding mode - gh (see CPDO)

FIX
ef - these bits are reserved and should be zero.
rounding mode - gh (see CPDO)

WFS,RFS,WFC,RFC
efgh - These bits are reserved and should be zero.

Constants cannot be specified in the Fm field for the FIX instruction since there is no point FIXing a known
value into an ARM integer register - a MOV instruction could put it there quicker!

26

ARM FPA10 Data Sheet

6.3.1 Compare Operations
31..28 27.24 23 	21 20 19..16 15..1211..8 7..4 3..0

I Condi 11101 	abc I lle Fn l 111110001) fghlii Fm

Note that these are special cases of the general CPRT instruction, with Rd = 15 and L/S = 1.

<CMF I CNF I CMFE I CNFE> (cond) Fn, Fm
operation - abc
constant ROM/Fm - i (see CPDO)

abc
100 CMF 	Compare floating: compare Fn with Fm
101 CNF 	Compare negated floating: compare Fn with -Fm
110 CMFE Compare floating with exception: compare Fn with Fm
111 CNFE Compare negated floating with exception: compare Fn with -Fm

efgh - These bits are reserved and should be zero.

Compares are provided with and without the exception that could arise if the numbers are unordered.
When testing IEEE predicates, the CMF instruction should be used to test for equality (i.e. when a BEQ or
BNE will be used afterwards) or to test for unorderedness (in the V flag). The CMFE instruction should be
used for all other tests (BGT, BGE, BLT, BLE afterwards). CMFE produces an exception if the numbers are
unordered, i.e. whenever at least one operand is a NaN. CMF only produces an exception when at least one
operand is a signalling NaN.

The ARM flags N, Z, C, V refer to the following after compares:

If the AC bit in the FPSR is clear:

N : Less Than 	 i.e. Fn less than Fm (or -Fm)
Z 	 : Equal
C 	 : Greater Than or Equal 	i.e. Fn greater than or equal to Fm
✓ : Unordered

Note that when two numbers are not equal N and C are not necessarily opposites: if the result is unordered
they will both be false.

If the AC bit in the FPSR is set:

N : Less Than
Z 	 : Equal
C 	 : Greater Than or Equal or Unordered
✓ : Unordered

In this case, N and C are necessarily opposites.

27

7 FPA10 Instruction Repertoire

The FPA and support software together implement the ARM floating point instruction set as defined in the
previous section. The FPA10 itself implements a subset of the instruction set as defined below.

7.1 Instructions implemented in FPA10

Mnemonic 	I 	 Instructions implemented in FPAFPA10IEEE Required

LDF (S/D/E) 	Load (Single/Double/Extended) 	 *

STF (S/D/E) 	Store (Single/Double/Extended) 	 *

ADF 	 Add 	 *

SUF 	 Subtract 	 *

RSF 	 Reverse Subtract

MUF 	 Multiply

DVF 	 Divide

RDF 	 Reverse Divide

FML 	 Fast Multiply

FDV 	 Fast Divide

FRD 	 Fast Reverse Divide

ABS 	 Absolute

URD 	 Round to Integral Value, possibly producing abnormal value

NRM 	 Normalise result of URD

MVF 	 Move 	 *

MNF 	 Move Negated

FLT 	 Integer to floating point conversion 	 *

FIX 	 Floating point to integer conversion 	 *

WFS 	 Write Floating Point Status 	 *

RFS 	 Read Floating Point Status 	 *

WFC 	 Write Floating Point Control

RFC 	 Read Floating Point Control

CMF 	 Compare Floating

CNF 	 Compare Negated Floating

28

ARM FPA10 Data Sheet

Mnemonic 	I 	 Instructions implemented in FPA10 	 I 	IEEE Required

CMFE 	 Compare Floating with Exception 	 *

CNFE 	 Compare Negated Floating with Exception

LFM 	 Load Floating Multiple (new to FPA)

SFM 	 Store Floating Multiple (new to FPA)

7.2 Instructions supported by software support code (FPASC)

Mnemonic 	I 	Instructions supported by software support code (FPASC) 	I 	IEEE Required

LDFP 	 Load Packed 	 *

STFP 	 Store Packed 	 *

SQT 	 Square Root

POW 	 Power

RPW 	 Reverse Power

RMF 	 Remainder 	 *

POL 	 Polar Angle (ArcTan2)

RND 	 Round to Integral Value 	 *

LOG 	 Logarithm to base 10

LGN 	 Logarithm to base e

EXP 	 Exponent

SIN 	 Sine

COS 	 Cosine

TAN 	 Tangent

ASN 	 Arc Sine

ACS 	 Arc Cosine

ATN 	 Arc Tangent

29

The FPS will not however execute arithmetic instructions in the first list (7.1) if one or more of the operands
has one of the following exceptional values (also known as uncommon values):

Infinity
NaN (Not a Number)
Denormalised
Illegal extended precision bit patterns

In this case the instruction will be 'bounced' to the software support code for emulation.

Infinities and NaNs should occur very rarely in normal code. Slthough not common, there are a few
'normal' programs which frequently underflow and produce denormalised numbers, in which case
handling of denormalised operands in software may cause a performance degradation. If necessary, this
performance degradation can be minimised by setting a bit in the status register which disables support for
denormalised numbers.

Certain other exceptional conditions that arise during an operation will cause the FPS to transfer that
operation to the support code. These conditions include all cases of the following IEEE exceptions :

• Invalid Operation
• Division by Zero
• Overflow
• Underflow

If the Inexact condition is detected, operation will only be transferred to the support code if the Inexact trap
enable bit is set in the Floating Point Status Register. Some other rare cases (such as mantissa overflow that
occurs during the rounding stage of a Store Floating instruction) that do not in fact produce an IEEE
exception will also trap to the support software.

30

ARM FPA10 Data Sheet

8 Floating Point Support Code

Software support for the FPA10 includes new FPS support code (FPSSC) and a new software-only floating
point emulator (FPE). The purpose of the FPSSC is threefold :

a) Emulate in software those instructions in the floating point instruction set that are not
implemented in the FPS (see list above).

b) Emulate in software those instructions rejected by the FPS because they involve
uncommon values.

c) Provide support for exception conditions reported by the FPS.

The FPE includes support for the new LFM and SFM instructions. The FPS system and the new FPE
produce identical results; both systems are fully IEEE-conformant.

Both systems seamlessly implement the ARM floating point instruction set.

Note: This section to be expanded at a later date.

8.1 IEEE Standard Conformance
The full name of the IEEE Floating Point Standard is as follows:

IEEE Standard for Binary Floating Point Arithmetic - SNSI/IEEE Std 754-1985

This is referred to as the IEEE standard or merely as IEEE in this datasheet. Note that the FPS hardware on
its own will not be IEEE-conformant. Support software (the FPSSC - FPA Support Code) is required to:

a) Implement the IEEE-required operations not provided by the FPS.
b) Handle operations on uncommon values which are bounced by the FPS.
c) Provide exception trap-handling capability.

31

9 Instruction Cycle Timing

The following table shows the number of cycles that FPA10 takes in executing each instruction. Two
numbers are given: the instruction latency and the maximum instruction throughput.

Throughput is defined to be the number of cycles between the start of an instruction and the start of a
succeeding instruction of the same type, both instructions occurring in a long sequence of instructions of
the same type; repeated use of the same register may only occur in a sequence of length greater than or
equal to 8.

Latency is loosely defined to be the number of cycles between the start of instruction execution and its
completion. The number of cycles taken by a sequence of floating point instructions, each of which depends
on the result of the preceding instruction in the sequence, can generally be found by adding the latencies of
the individual instructions. There may be minor discrepancies from this rule for particular sequences.

The exact definition is dependent on the type of instruction being executed:

Arithmetic instructions: 	From register read to register write.

LDF, LFM, FLT: 	 From start of instruction arbitration to register write.

STF, SFM, CMF, FIX: 	From register read to start of next instruction arbitration.

WFS, WFC: 	 From start of instruction arbitration until the next instruction would be
deemed to start by these rules.

RFS, RFC: 	 From the time that the previous instruction would be deemed to end by
these rules to the start of the next instruction arbitration.

Note that speculative execution, concurrent execution between arithmetic and load/store instructions and
concurrent execution between SRM integer instruction and FPA10 instructions can significantly reduce the
effective timings shown.

Instructions can be classified into arithmetic, load/store and joint instructions as follows:

Srithmetic: 	Those instructions that execute completely within the arithmetic unit. These include all the
hardware-implemented coprocessor data operations (see section 6.2).

Load/store: 	Those instructions that execute completely within the load/store unit. These include LDF,
STF, LFM and SFM.

Joint: 	FIX, CMF,CNF,CMFE,CNFE : Srithmetic followed by load/store.
FLT: 	 Load/store followed by arithmetic.
WFS,RFS,WFC,RFC: 	Occupy both arithmetic and load/store units, since the

arithmetic unit must be empty before any of these
instructions may be executed.

32

ARM FPA10 Data Sheet

Instruction 	I 	Precision 	I No. registers I Throughput I 	Latency

LDF/STF 	 S 	 2 	 3

LDF/STF 	 D 	 3 	 4

LDF/STF 	 E 	 4 	 5

LFM/SFM 	 1 	 4 	 5

LFM/SFM 	 2 	 7 	 8

LFM/SFM 	 3 	 10 	 11

LFM/SFM 	 4 	 13 	 14

MVF/MNF/ABS 	 S/D/E 	 1 1 	 2

ADF/SUF/RSF/URD/NRM 	S/D/E 	 2 	 4

MUF 	 S/D/E 	 8 	 9

FML 	 S/D/E 	 5 	 6

DVF/RDF/FDV/FRD 	 S 	 302 	31 2

DVF/RDF/FDV/FRD 	 D 	 582 	 592

DVF/RDF/FDV/FRD 	 E 	 702 	71 2

FLT 	 S/D/E 	 6 	 8

FIX 	 8 	 9

CMF/CMFE/CNF/CNFE 	 5 	 6

RFS/RFC 	 3 	 43

WFS/WFC 	 3 	 3

Notes:
1 Cannot be sustained for more than 2 cycles out of every 3 cycles.
2 May be less if the division comes out exactly, causing early termination of the division

algorithm (minimum of 6 cycles throughput, 7 cycles latency).
3 May be 2 or 3 cycles, depending on the previous instruction.

33

9.1 Performance Tuning
FPA10 is capable of executing load/store and arithmetic instructions concurrently and is also capable of
executing instructions speculatively - i.e. before they have been committed to execution by the ARM CPU.
Both of these features can be exploited to maximise the performance of FPA10. The code fragment shown
below is a good example of how this can be achieved:

1 	SFM F0,4, [RO] , #48
2 	DVFS FO, F1, #3
3 	SFM F4,4, [R0], #48
4 MOV R1, R2
5 MOV R3, R4

CPCLK

CPD[31:0] 	0-0-1 	 s

Store_issue 	A

Store_accepted

AU_issue

Prepare

Calculate 	 , 	

Align 	 •

Round 	 ()

The labels 1, 2, 3, 4 & 5 indicate the cycles in which these instructions are fetched on the CPD[31:0] bus,
while A, B & C indicate the cycles in which the floating point instructions are issued to their respective units
in FPA10. The first store multiple instruction (1) is issued (A) to the load/store unit, resulting in 12 words
of data being transferred on CPD[31:0] as shown by the shaded boxes on the timing diagram. Meanwhile,
the divide instruction (2) is issued (B) to the arithmetic unit (AU), which then begins execution
speculatively; its progress through the Prepare, Calculate, Align and Round stages of the AU pipeline is
shown by the shaded boxes on the timing diagram. The second SFM instruction (3) is issued (C) to the load/
store unit as soon as it is ready. This second SFM then executes while the AU is still busy on the divide
instruction; the second set of shaded boxes on the CPD[31:0] bus indicates the 12 words of data being
transferred for the second SFM instruction. This example shows how the divide instruction's execution time
can effectively be hidden by other instructions.

Note that the concurrency between ARM integer unit execution and FPS execution can also be exploited.
Contact ARM Ltd. for further details on optimising floating point code for the FPA.

34

ARM FPA10 Data Sheet

10 Boundary-Scan Test Interface

The boundary-scan interface conforms to the IEEE Std. 1149.1 - 1990, Standard Test Access Port and
Boundary-Scan Architecture (please refer to this document for an explanation of the terms used in this
chapter and for a description of the TAP controller states).

10.1 Overview
The boundary-scan interface provides a means of testing the core of the device when it is fitted to a circuit
board and a means of driving and sampling all the external pins of the device irrespective of the core state.
This latter function permits testing of both the device's electrical connections to the circuit board and (in
conjunction with other devices on the board having a similar interface) testing the integrity of the circuit
board connections between devices. The interface intercepts all external connections within the device and
each such "cell" is then connected together to form a serial register (the boundary-scan register). The whole
interface is controlled via 5 dedicated pins: TDI, TMS, TCK, nTRST and TDO). In all the descriptions that
follow, TDI and TMS are sampled on the rising edge of TCK and all output transitions on TDO occur
following the falling edge of TCK.

10.2 Reset
The boundary-scan interface includes a state-machine based controller (the TAP controller). Figure 10.2
shows the state transitions that occur in the TAP controller. In order to force the TAP controller into the
correct state after power-up of the device, a reset pulse must be applied to the NTRST pin. If the boundary-
scan interface is to be used, then NTRST must be driven LOW and then HIGH again. If the boundary-scan
interface is not to be used, then the NTRST pin may be tied permanently LOW. Note that a LOW on
NTRST causes an asynchronous reset of the boundary-scan logic and no clocking of TCK is required.

The action of test reset (either a pulse or a DC level) is as follows:

System mode is selected (i.e. the boundary-scan chain does NOT intercept any of the signals
passing between the pads and the core).

IDCODE is selected as the current instruction. If TCK is pulsed, the contents of the ID register
will be clocked out on TDO.

35

Figure 10.1 Boundary-Scan Block Diagram

36

ARM FPA10 Data Sheet

Figure 10.2 TAP Controller State Diagram

37

10.3 Instruction Register
The instruction register is 4 bits in length.

The fixed value loaded into the instruction register during the CAPTURE-IR controller state is 0001.

10.4 Public Instructions
The following public instructions are supported:

INSTRUCTION 	 BINARY CODE

BYPASS 	 1111
SAMPLE/PRELOAD 	0011
EXTEST 	 0000
INTEST 	 1100
IDCODE 	 1110
HIGHZ 	 0111
CLAMP 	 0101
CLAMPZ 	 1001

When loading a new instruction, the binary code should be shifted into TDI in the order least-significant
to most-significant bit.

10.4.1 BYPASS (1111)
The BYPASS instruction connects a 1 bit shift register (the BYPASS register) between TDI and TDO.

When the BYPASS instruction is loaded into the instruction register, all the boundary-scan cells are placed
in their normal (system) mode of operation. This instruction has no effect on the system pins.

In the CAPTURE-DR state, a logic '0' is captured by the bypass register. In the SHIFT-DR state, test data is
shifted into the bypass register via TDI and out via TDO after a delay of one TCK cycle. Note that the first
bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.

10.4.2 SAMPLE/PRELOAD (0011)
The BS (boundary-scan) register is placed in test mode by the SAMPLE/PRELOAD instruction.

The SAMPLE/PRELOAD instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the SAMPLE/PRELOAD instruction, all the boundary-scan
cells are placed in their normal system mode of operation.

In the CAPTURE-DR state, a snapshot of the signals at the boundary-scan cells is taken on the rising edge
of TCK. Normal system operation is unaffected. In the SHIFT-DR state, the sampled test data is shifted out
of the BS register via the TDO pin, whilst new data is shifted in via the TDI pin to preload the BS register
parallel input latch. In the UPDATE-DR state, the preloaded data is transferred into the BS register parallel
output latch. Note that this data is not applied to the system logic or system pins while the SAMPLE/

38

ARM FPA10 Data Sheet

PRELOAD instruction is active. This instruction should be used to preload the boundary-scan register with
known data prior to selecting the INTEST, EXTEST, CLAMP or CLAMPZ instructions; appropriate guard
values to be used for each boundary-scan cell are documented in the section entitled Boundary-Scan (BS)
Register.

10.4.3 EXTEST (0000)
The BS (boundary-scan) register is placed in test mode by the EXTEST instruction.

The EXTEST instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the EXTEST instruction, all the boundary-scan cells are placed
in their test mode of operation.

In the CAPTURE-DR state, inputs from the system pins and outputs from the boundary-scan output cells
to the system pins are captured by the boundary-scan cells.

In the SHIFT-DR state, the previously captured test data is shifted out of the BS register via the TDO pin,
whilst new test data is shifted in via the TDI pin to the BS register parallel input latch. In the UPDATE-DR
state, the new test data is transferred into the BS register parallel output latch. Note that this data is applied
immediately to the system logic and system pins.

To ensure that the core logic receives a known, stable set of inputs during EXTEST, a set of guarding values
must be shifted into some of the boundary-scan cells; this guarding pattern is specified in the section
entitled Boundary-Scan (BS) Register. To ensure that the guarding pattern is in place from the start of the
EXTEST operation, it should be shifted into the BS register using the SAMPLE/PRELOAD instruction prior
to selecting EXTEST.

10.4.4 INTEST (1100)

The BS (boundary-scan) register is placed in test mode by the INTEST instruction.

The INTEST instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the INTEST instruction, all the boundary-scan cells are placed
in their test mode of operation.

In the CAPTURE-DR state, the inverse of the data supplied to the core logic from input boundary-scan cells
is captured, while the true value of the data that is output from the core logic to output boundary-scan cells
is captured.

In the SHIFT-DR state, the previously captured test data is shifted out of the BS register via the TDO pin,
whilst new test data is shifted in via the TDI pin to the BS register parallel input latch. In the UPDATE-DR
state, the new test data is transferred into the BS register parallel output latch. Note that this data is applied
immediately to the system logic and system pins. The first INTEST vector should be clocked into the
boundary-scan register, using the SAMPLE/PRELOAD instruction, prior to selecting INTEST to ensure
that known data is applied to the system logic.

39

To ensure that the output pads are placed in a known, stable state during INTEST, a set of guarding values
must be shifted into some of the boundary-scan cells; this guarding pattern is specified in the section
entitled Boundary-Scan (BS) Register. To ensure that the guarding pattern is in place from the start of the
INTEST operation, it should be shifted into the BS register using the SAMPLE/PRELOAD instruction prior
to selecting INTEST.

Single-step operation is possible using the INTEST instruction.

10.4.5 IDCODE (1110)

The IDCODE instruction connects the device identification register (or ID register) between TDI and TDO.
The ID register is a 32-bit register that allows the manufacturer, part number and version of a component
to be determined through the TAP.

When the instruction register is loaded with the IDCODE instruction, all the boundary-scan cells are placed
in their normal (system) mode of operation.

In the CAPTURE-DR state, the device identification code (specified in the section entitled Device
Identification (ID) Code Register) is captured by the ID register. In the SHIFT-DR state, the previously
captured device identification code is shifted out of the ID register via the TDO pin, whilst data is shifted
in via the TDI pin into the ID register. In the UPDATE-DR state, the ID register is unaffected.

10.4.6 HIGHZ (0111)

The HIGHZ instruction connects a 1 bit shift register (the BYPASS register) between TDI and TDO.

When the HIGHZ instruction is loaded into the instruction register, all outputs are placed in an inactive
drive state.

In the CAPTURE-DR state, a logic '0' is captured by the bypass register. In the SHIFT-DR state, test data is
shifted into the bypass register via TDI and out via TDO after a delay of one TCK cycle. Note that the first
bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.

10.4.7 CLAMP (0101)

The CLAMP instruction connects a 1 bit shift register (the BYPASS register) between TDI and TDO.

When the CLAMP instruction is loaded into the instruction register, the state of all output signals is defined
by the values previously loaded into the boundary-scan register. A guarding pattern (specified in the
section entitled Boundary-Scan (BS) Register) should be pre-loaded into the boundary-scan register using the
SAMPLE/PRELOAD instruction prior to selecting the CLAMP instruction.

In the CAPTURE-DR state, a logic '0' is captured by the bypass register. In the SHIFT-DR state, test data is
shifted into the bypass register via TDI and out via TDO after a delay of one TCK cycle. Note that the first
bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.

10.4.8 CLAMPZ (1001)

The CLAMPZ instruction connects a 1 bit shift register (the BYPASS register) between TDI and TDO.

40

ARM FPA10 Data Sheet

When the CLAMPZ instruction is loaded into the instruction register, all outputs are placed in an inactive
drive state, but the data supplied to the disabled output drivers is defined by the values previously loaded
into the boundary-scan register. The purpose of this instruction is to ensure, during production testing, that
each output driver can be disabled when its data input is either a '0' or a '1'. A guarding pattern (specified
in the section entitled Boundary-Scan (BS) Register) should be pre-loaded into the boundary-scan register
using the SAMPLE/PRELOAD instruction prior to selecting the CLAMPZ instruction.

In the CAPTURE-DR state, a logic '0' is captured by the bypass register. In the SHIFT-DR state, test data is
shifted into the bypass register via TDI and out via TDO after a delay of one TCK cycle. Note that the first
bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.

10.5 Test Data Registers

10.5.1 Bypass Register

Purpose: This is a single bit register which can be selected as the path between TDI and TDO to allow the
device to be bypassed during boundary-scan testing.

Length: 1 bit

Operating Mode: When the Bypass instruction is the current instruction in the instruction register, serial
data is transferred from TDI to TDO in the SHIFT-DR state with a delay of one TCK cycle.

There is no parallel output from the bypass register.

A logic '0' is loaded from the parallel input of the bypass register in the CAPTURE-DR state.

10.5.2 Device Identification (ID) Code Register
Purpose: This register is used to read the 32-bit device identification code.

Length: 32 bits

Operating Mode: When the IDCODE instruction is current, the ID register is selected as the serial path
between TDI and TDO.

There is no parallel output from the ID register.

The following 32-bit device identification code is loaded into the ID register during the CAPTURE-DR state:

Bits[31:28] 	: Version code = 0001
Bits[27:12] 	: Part number code = 1101010011000010

Bits[11:1] 	: Manufacturer's code = 00000110111
Bit[0] 	: Start bit =1

Hexadecimal value of ID code = 1D4C206F

41

10.5.3 Boundary-Scan (BS) Register
Purpose: The BS register consists of a serially connected set of cells around the periphery of the device, at
the interface between the system (or core) logic and the system input/output pads. This register can be used
to isolate the system logic from the pins and then apply tests to the system logic, or conversely to isolate the
pins from the system logic and then drive or monitor the system pins.

Length: 77 bits

Operating Modes: The BS register is selected as the register to be connected between TDI and TDO only
during the SAMPLE/PRELOAD, EXTEST and INTEST instructions. Values in the BS register are used, but
are not changed, during the CLAMP and CLAMPZ instructions.

In the normal (system) mode of operation, straight-through connections between the system logic and pins
are maintained and normal system operation is unaffected.

In EXTEST or INTEST, values can be applied to the system logic or output pins independently of the actual
values on the input pins and system logic outputs respectively. Additional boundary-scan cells are
interposed in the scan chain in order to control the enabling of three-state outputs.

The correspondence between boundary-scan cells and system pins, system direction controls and system
output enables is shown below. The cells are listed in the order in which they are connected in the
boundary-scan register, starting with the cell closest to TDI. All outputs are three-state outputs. All
boundary-scan register cells at input pins can apply tests to the on-chip system logic.

EXTEST/CLAMP guard values specified in the table below should be clocked into the boundary-scan
register (using the SAMPLE/PRELOAD instruction) before the EXTEST, CLAMP or CLAMPZ instructions
are selected to ensure that known data is applied to the system logic during the test. The INTEST guard
values shown in the table below should be clocked into the boundary-scan register (using the SAMPLE/
PRELOAD instruction) before the INTEST instruction is selected to ensure that all outputs are disabled. An
asterisk in the guard value col umns indicates that any value can be substituted (as the test requires), but
ones and zeros should always be placed as shown.

42

ARM FPA10 Data Sheet

No. I 	Cell name 	I 	Pin 	Type 	0/P enable 	
W 	. •

BScell 	
I
	S
	 1

guard value 	guard value

1 	DINDIN00D[0] 	IN 	 - 	 * 	 0

2 	DOUDOUT00 D[0] 	OUT 	NENOUT 	 0 	 *

3 	DEN01 	 CPD[1] 	IN 	 - 	 * 	 0

4 	DOUTO1 	CPD[1] 	OUT 	NENOUT 	 0 	 *

5 	DINO2 	 CPD[2] 	IN 	 * 	 0

6 	DOUTO2 	CPD[2] 	OUT 	NENOUT 	 0 	 *

7 	DINO3 	 CPD[3] 	IN 	 - 	 * 	 0

8 	DOUTO3 	CPD[3] 	OUT 	NENOUT 	 0 	 *

9 	DINO4 	 CPD[4] 	IN 	 - 	 0

10 	DOUTO4 	CPD[4] 	OUT 	NENOUT 	 0 	 *

11 	DIMS 	 CPD[5] 	IN 	 - 	 * 	 0

12 	DOUTO5 	CPD[5] 	OUT 	NENOUT 	 0 	 * 	.

13 	DINO6 	 CPD[6] 	IN 	 - 	 0

14 	DOUTO6 	CPD[6] 	OUT 	NENOUT 	 0

15 	DINO7 	 CPD[7] 	IN 	 - 	 0

16 	DOUTO7 	CPD[7] 	OUT 	NENOUT 	 0 	 *

17 	DIN08 	 CPD[8] 	IN 	 - 	 0

18 	DOUTO8 	CPD[8] 	OUT 	NENOUT 	 0 	 *

19 	DINO9 	 CPD[9] 	IN - 	 * 	 0 ,

20 	DOUTO9 	CPD[9] 	OUT 	NENOUT 	 0 	 *

21 	DIN10 	 CPD[10] 	IN 	 - 	 0

22 	DOUT10 	CPD[10] 	OUT 	NENOUT 	 0 	 *

23 	DINH 	 CPD[11] 	IN 	 - 	 * 	 0

24 	DOUT11 	CPD[11] 	OUT 	NENOUT 	 0

25 	DIN12 	 CPD[12] 	IN 	 - 	 0

26 	DOUT12 	CPD[12] 	OUT 	NENOUT 	 0

27 	DIN13 	 CPD[13] 	IN 	 - 	 * 	 0

28 	DOUT13 	CPD[13] 	OUT 	NENOUT 	 0

29 	DIN14 	 CPD[14] 	IN 	 - 	 * 	 0

30 	DOUT14 	CPD[14] 	OUT 	NENOUT 	 0 	 *

31 	DIN15 	 CPD[15] 	IN 	 - 	 0

32 	DOUT15 	CPD[15] 	OUT 	NENOUT 	 0 	 *

43

No. I 	Cell name 	I 	Pin 	I 	Type 	I 	0/P enable BS cell I 	I NTEST 	I EXTEST/CLAMP
guard value 	guard value

33 	DIN16 	 CPD[16] 	IN 	 - 	 * 	 0

34 	DOUT16 	CPD[16] 	OUT 	NENOUT 	 0 	 *

35 	DIN17 	 CPD[17] 	IN 	 - 	 * 	 0

36 	DOUT17 	CPD[17] 	OUT 	NENOUT 	 0 	 *

37 	NENOUT 	 - 	OUTENO 	 - 	 1 	 -

38 	DIN18 	 CPD[18] 	IN 	 - 	 * 	 0

39 	DOUT18 	CPD[18] 	OUT 	NENOUT 	 0 	 *

40 	DIN19 	 CPD[19] 	IN 	 - 	 0

41 	DOUT19 	CPD[19] 	OUT 	NENOUT 	 0

42 	DIN20 	 CPD[20] 	IN 	 - 	 0

43 	DOUT20 	CPD[20] 	OUT 	NENOUT 	 0 	 *

44 	DIN21 	 CPD[21] 	IN 	 - 	 * 	 0

45 	DOUT21 	CPD[21] 	OUT 	NENOUT 	 0 	 *

4 6 	D1N22 	 CPD[22] 	IN 	 - 	 0

47 	DOUT22 	CPD[22] 	OUT 	NENOUT 	 0

48 	DIN23 	 CPD[23] 	IN 	 - 	 0

49 	DOUT23 	CPD[23] 	OUT 	NENOUT 	 0

50 	DIN24 	 CPD[24] 	IN 	 - 	 0

51 	DOUT24 	CPD[24] 	OUT 	NENOUT 	 0 	 *

52 	DIN25 	 CPD[25] 	IN 	 	 * 0

5 3 	DOUT25 	CPD[25] 	OUT 	NENOUT 	 0

54 	DIN26 	 CPD[26] 	IN 	 - 	 0

55 	DOUT26 	CPD[26] 	OUT 	NENOUT 	 0 	 *

56 	D1N27 	 CPD[27] 	IN 	 - 	 * 	 0

57 	DOUT27 	CPD[27] 	OUT 	NENOUT 	 0

58 	DIN28 	 CPD[28] 	IN 	 - 	 *

59 	DOUT28 	CPD[28] 	OUT 	NENOUT 	 0 	 *

60 	DIN29 	 CPD[29] 	IN 	 - 	 * 	 0

61 	DOUT29 	CPD[29] 	OUT 	NENOUT 	 0

62 	DIN30 	 CPD[30] 	IN 	 - 	 * 	 0

63 	DOUT30 	CPD[30] 	OUT 	NENOUT 	 0 	 *

64 	DIN31 	 CPD[31] 	IN 	 - 	 * 	 0

65 	DOUT31 	CPD[31] 	OUT 	NENOUT 	 0 	 *

66 	NENCPAB 	 - 	OUTENO 	 - 	 1 	 -

44

ARM FPA10 Data Sheet

INTEST 	I
No. I 	Cell name 	I 	Pin 	I 	Type 	I 	0/P enable BS cell I 	guard value 	

I EXTEST/CLAMP
guard value

67 	CPBOUT 	CPBOUT 	OUT 	NENCPAB 	 1 	 *

68 	CPAOUT 	CPAOUT 	OUT 	NENCPAB 	 1 	 *

6 9 	NOPC 	 NOPC 	IN 	 - 	 * 	 1

7 0 	NCPI 	 NCPI 	IN 	 - 	 * 	 1

71 	CPS PV 	 CPSPV 	IN 	 - 	 * 	 1

72 	CPCLK 	• CPCLK 	IN 	 - 	 0

73 	CPBIN 	 CPBIN 	IN 	 - 	 * 	 1

74 	NRESET 	NRESET 	IN 	 - 	 * 	 0

75 	NWATT 	NWAIT 	IN 	 - 	 * 	 0

76 	DBE 	 DBE 	IN 	 - 	 0

77 	CPAIN 	 CPAIN 	IN 	 - 	 * 	 1

KEY

NWAITput pad
OUT 	Output pad
OUTENO 	Output enable active low

45

10.6 Output Enable Boundary-scan Cells
The following boundary-scan cells control the output drivers of three-state outputs as shown:

No 	I 	Cell Name 	I 	Pin I 	Type 	I 	Outputs Controlled

37 	NENOUT 	 - 	OUTENO 	CPD[31:01

66 	NENCPAB 	- 	OUTENO 	CPAOUT, CPBOUT

In the case of type OUTENO enable cells (NENOUT & NENCPAB), loading a '1' into the cell will disable the
associated drivers.

When the SAMPLE/PRELOAD or INTEST instructions are active, the value captured in the NENOUT cell
will reflect the state of the NENOUT signal from the core. However, the input of the NENCPAB cell is tied
permanently to Vss, so a logic '0' will always be captured by this cell if the SAMPLE/PRELOAD or INTEST
instructions are active.

To put all FPA10 three-state outputs into their high impedance state, a logic '1' should be clocked into the
output enable boundary-scan cells NENOUT & NENCPAB. Alternatively, the HIGHZ instruction can be
used.

10.7 Single-step Operation
FPA10 is a static design and there is no minimum clock speed. It can therefore be single-stepped while the
INTEST instruction is selected. This can be achieved by serialising a parallel stimulus and clocking the
resulting serial vectors into the boundary-scan register. When the boundary-scan register is updated, new
test stimuli are applied to the core logic inputs; the effect of these stimuli can then be observed on the core
logic outputs by capturing them in the boundary-scan register.

10.8 Pin information
TCK, TMS, TDI and nTRST are TTL level inputs with on-chip pull up resistors, and TDO is a CMOS level
output (see the chapter on DC characteristics for full details of these pins).

The TDO output should not be overdriven when active.

46

ARM FPA10 Data Sheet

11 DC Parameters - PRELIMINARY

11.1 Absolute Maximum Ratings

Symbol 	I 	Parameter 	I 	Min 	I 	Max 	I 	Units

Vdd 	Supply Voltage 	 -0.3 	 7.0 	 V

Vip 	Voltage applied to any pin 	 -0.3 	Vdd + 0.3 	V

Ta 	 Ambient Operating Temperature 	-10 	 +80 	Deg. C

Ts 	 Storage Temperature 	 -40 	+125 	Deg. C

Pd 	 Maximum Power Dissipation 	 1.0 	 W

Notes:

These are stress ratings only. Exceeding the absolute maximum ratings may permanently damage the
device. Operating the device at absolute maximum ratings for extended periods may affect device
reliability. Functional operation of the device at these or any other conditions outside those specified is not
implied.

The device contains circuitry designed to provide protection from damage by static discharge. It is
nonetheless recommended that precautions be taken to avoid applying voltages outside the specified
range.

All voltages are measured with respect to Vss.

47

11.2 Recommended DC Operating Conditions

Symbol 	I 	Parameter 	I 	Min 	I 	Typ 	I 	Max 	I 	Units

Vdd 	Supply Voltage 	 4.75 	. 5.0 	5.25 	V

Vih 	Input High Voltage 	 2.4 	 Vdd 	V

Vil 	Input Low voltage 	 0.0 	 0.8 	V

Ta 	Ambient Operating Temperature 	0 	 70 	Deg. C

Notes:

All voltages are measured with respect to Vss.

All inputs are TTL-compatible.

48

ARM FPA10 Data Sheet

11.3 DC Characteristics - PRELIMINARY
Ta = 0°C to +70°C, Vdd = 5V ± 5%

Symbol 	I 	 Parameter 	 I 	Typ 	I 	Units 	I 	Conditions

Idd 	 Supply Current 	 100 	mA

Isc 	 Output Short Circuit Current 	 160 	mA 	Note 1

Ilu 	 D.C. Latch-up Current 	 >200 	mA 	Note 2

Iin 	 IT Input Leakage Current 	 10 	 upA 	Note 3

Iinp 	ITP Input Leakage Current 	 -500 	 upA 	Note 4

Ioh 	 Output High Current (Vout = Vdd - 0.4V) 	7 	 mA 	Note 5

lol 	 Output Low Current (Vout = Vss + 0.4V) 	-11 	 mA 	Note 5

Viht 	Input High Voltage Threshold 	 2.1 	 V

Vilt 	Input Low Voltage Threshold 	 1.4 	 V

Cin 	Input Capacitance 	 5 	 pF 	Note 6

Notes:

1. Not more than one outpu10kiOhmuld be shorted to either rail at any time and for as short -a time as
possible.

2. This value represents the DC current that the input/output pins can tolerate before the chip latches
up. As sustained latch-up is catastrophic, this current must never be approached.

3. Input leakage current for the IT pins (TTL-level inputs).

4. Input leAage current for an ITP pin (TTL-level input Ath pull-up resistor) connected to Vss. IT?
pins incorporate a pull-up resistor in the range 10ki2 - 100ka

5. Output current characteristics apply to all output pads.

6. This value includes the capacitance of the chip carrier and socket.

49

50

ARM FPA10 Data Sheet

12 AC Parameters - PRELIMINARY

12.1 Test Conditions

The AC timing diagrams presented in this section assume that the outputs of FPA10 have been loaded with
the capacitive loads shown in the "Test Load" column of the table below; these loads have been chosen as
typical of the system in which the FPS will be employed.

The output pads of the FPA10 are CMOS drivers which exhibit a propagation delay that increases linearly
with the increase in load capacitance. An "output derating" figure is given for each output pad, showing the
approximate rate of increase of output time with increasing load capacitance.

Output Signal 	
Test Load 	Output derating

(pF) 	 (nslns/pF

Xcpd[31:0] 	 50 	 0.072

Xcpaout, Xcpbout 	 50 	 0.072

51

12.2 AC Characteristics - PRELIMINARY

12.2.1 Main FPA10 Signals

52

ARM FPA10 Data Sheet

Ta = 0°C to +70°C, Vdd = 5V ± 5% - PRELIMINARY - Subject to change

Symbol 	I 	Parameter 	I 	Min 	I 	Max 	I 	Unit 	I Note

Tcpckl 	CPCLK Low Time 	 20 	 ns 	Note 1

Tcpckh 	CPCLK High Time 	 20 	 ns 	Note 1

Tws 	 nWAIT setup to CPCLK 	 5 	 ns

Twh 	 nWAIT hold from CPCLK 	 5 	 ns

Tcpins 	CPAIN & CPB1N setup time 	 10 	 ns

Tcpinh 	CPAIN & CPBIN hold time 	 5 	 ns

Tcpout 	CPAOUT & CPBOUT delay 	 20 	ns

Tcpouth 	CPAOUT & CPBOUT hold time 	5 	 ns

Tdbe 	 DBE to data enable 	 10 	ns 	Note 2

Tcpde 	CPCLK to data enable 	 15 	ns 	Note 2

Tdbz 	 DBE to data disable 	 15 	ns 	Note 2

Tcpdz 	CPCLK to data disable 	 15 	ns 	Note 2

Tcpdout 	Data out delay 	 15 	ns 	Note 2

Tcpdoh 	Data out hold 	 5 	ns 	Note 2

Tcpdis 	Data in setup 	 5 	 ns 	Note 2

Tcpdih 	Data in hold 	 5 	 ns 	Note 2

Tsps 	 CPSPV setup time 	 5 	 ns

Tsph 	 CPSPV hold time 	 5 	 ns

Tcpis 	 nCPI setup time 	 5 	 ns

Tcpih 	nCPI hold time 	 5 	 ns

Topcs 	nOPC setup time 	 5 	 ns

Topch 	nOPC hold time 	 5 	 ns

Notes :

1. CPCLK timings measured between clock edges at 50% of Vdd.
2. CPD[31:0] outputs are specified to TTL levels.

53

12.2.2 Boundary-Scan Interface Signals

54

ARM FPA10 Data Sheet

(Ta = 0°C to +70°C, Vdd = 5V ± 5%) - PRELIMINARY
Symbol 	I 	 Parameter 	 I 	Min 	I 	Typ 	I Max I 	Units 	I Note

Tbscl 	 TCK low period 	 50 	 ns 	1

Tbsch 	TCK high period 	 50 	 ns 	1

Tbsis 	 TDI,TMS setup to [TCr] 	 10 	 ns

Tbsih 	 TDI,TMS hold from [TCr] 	 10 	 ns

Tbsoz 	 [TCf] to TDO valid 	 40 	ns 	2

Tbsoh 	TDO hold time 	 5 	 ns 	2

Tbsoe 	TDO enable time 	 5 	 ns 	2,3

Tbsod 	TDO disable time 	 40 	ns 	2,4

Tbsss 	 1/0 signal setup to [TCr] 	 5 	 ns 	5

Tbssh 	1/0 signal hold from [TCr] 	 20 	 ns 	5

Tbsdd 	[TCf] to data output valid 	 40 	ns 	6

Tbsdh 	Data output hold time 	 5 	 ns 	6

Tbsde 	Data output enable time 	 5 	 ns 	6,7

Tbsdz 	Data output disable time 	 40 	ns 	6,8

Tbsr 	 Reset period 	 30 	 ns

Tbsrs 	 TMS setup to [TRr] 	 10 	 ns 	9

Tbsrh 	TMS hold from (TRr] 	 10 	 ns 	9

Notes:

1. TCK may be stopped indefinitely in either phase.
2. Assumes a 25pF load on TDO. Output timing derates at 0.072ns/pF of extra load applied.

3. TDO enable time applies when the TAP controller enters the SHIFT-DR or SHIFT-IR states.

4. TDO disable time applies when the TAP controller leaves the SHIFT-DR or SHIFT-IR states.
5. For correct data latching, the I/O signals (from the core and the pads) must be setup and held with

respect to the rising edge of TCK in the CAPTURE-Dr state of the SAMPLE/PRELOAD, INTEST and
EXTEST instructions.

6. Assumes that the data outputs are loaded with the AC test loads (see AC parameter specification).
7. Data output enable time applies when the boundary-scan logic is used to enable the output drivers.

8. Data output disable time applies when the boundary-scan logic is used to disable the output drivers.
9. The TMS input must be held high as nTRST is taken high at the end of the boundary-scan reset

sequence.

55

13 Packaging and Pinout

FPA10 is packaged in a 68-pin Plastic Leaded Chip Carrier (PLCC).

I 	Signal 	I 	I 	Signal 	I 	I 	Signal 	I 	I 	Signal 	I 	I 	Signal

1 	CPD[6] 	15 	VSS 	29 	CPD[24] 	43 	nOPC 	57 	TMS

2 	CPD[7] 	16 	CPD[16] 	30 	CPD[251 	44 	nCPI 	58 	TDI

3 	CPD[8] 	17 	CPD[17] 	31 	VDD 	45 	CPSPV 	59 	nTRST

4 	VSS 	18 	VDD 	32 	VSS 	46 	CPCLK 	60 	NC

5 	VDD 	19 	VSS 	33 	CPD[26] 	47 	VSS 	61 	CPD[0]

6 	CPD[9] 	20 	CPD[18] 	34 	CPD[271 	48 	CPBIN 	62 	CPD[1]

7 	CPD[10] 	21 	CPD[19] 	35 	CPD[28] 	49 	nRESET 	63 	CPD[2]

8 	CPD[11] 	22 	VDD 	36 	CPD[29] 	50 	nWAIT 	64 	CPD[3]

9 	CPD[12] 	23 	VSS 	37 	CPD[30] 	51 	DBE 	65 	VSS

10 	CPD[13] 	24 	CPD[20] 	38 	VDD 	52 	CPAIN 	66 	VDD

11 	VSS 	25 	CPD[21] 	39 	VSS 	53 	TDO 	67 	CPD[4]

12 	CPD[14] 	26 	VSS 	40 	CPD[31] 	54 	TCK 	68 	CPD[5]

13 	CPD[15] 	27 	CPD[22] 	41 	CPBOUT 	55 	VSS

14 	VDD 	28 	CPD[23] 	42 	CPAOUT 	56 	VDD

Note: Pin 60 is a no connect pin and should be left unconnected.

56

ARM FPA10 Data Sheet

14 Typical System Configuration

57

HEADQUARTERS OPERATIONS
GEC PLESSEY SEMICONDUCTORS
Cheney Manor, Swindon,
Wiltshire SN2 2QW, United Kingdom.
Tel: (0793) 518000
Fax: (0793) 518411

GEC PLESSEY SEMICONDUCTORS
Sequoia Research Park, 1500 Green Hills Road,
Scotts Valley, California 95066,
United States of America. Tel: (408) 438 2900
Fax: (408) 438 5576

Manufactured under licence from Advanced RISC Machines Ltd
ARM and the ARM logo are trademarks of Advanced RISC Machines Ltd

Advanced RISC Machines Ltd 1993

CUSTOMER SERVICE CENTRES
• FRANCE & BENELUX Les Ulis Cedex Tel: (1) 64 46 23 45 Tx: 602858F

Fax : (1) 64 46 06 07
• GERMANY Munich Tel: (089) 3609 06-0 Tx: 523980 Fax : (089) 3609 06-55
• ITALY Milan Tel: (02) 66040867 Fax: (02) 66040993
• JAPAN Tokyo Tel: (03) 3296-0281 Fax: (03) 3296-0228
• NORTH AMERICA Integrated Circuits and Microwave Products Scotts Valley, USA

Tel (408) 438 2900 Fax: (408) 438 7023.
Hybrid Products, Farmingdale, USA Tel (516) 293 8686
Fax: (516) 293 0061.

• SOUTH EAST ASIA Singapore Tel: (65) 3827708 Fax: (65) 3828872
• SWEDEN Stockholm, Tel: 46 8 702 97 70 Fax: 46 8 640 47 36
• UNITED KINGDOM & SCANDINAVIA

Swindon Tel: (0793) 518510 Tx: 444410 Fax : (0793) 518582
These are supported by Agents and Distributors in major countries world-wide.

GEC Plessey Semiconductors 1993

This pubication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded
as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capabiity, performance or suitabi ity of any product or service. The Company
reserves the right to alter without prior knowledge the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitabilty of any equipment using such information
and to ensure that any publcation or data used is up to date and has not been superseded. These products are not suitable for use in any medcal products whose failure to perform may result in significant injury

or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62

