
reference manual

ARM Evaluation System

Acorn OEM Products

ARM software

Part No 0448,007
Issue No 1.0
24 July 1986

0 Copyright Acorn Computers Limited 1986

Neither the whole nor any part of the information contained in, or the product
described in, this manual may be adapted or reproduced in any material form except
with the prior written permission of the copyright holder. The only exceptions are as
provided for by the Copyright (photocopying) Act, or for the purpose of review, or
in order for the software herein to be entered into a computer for the sole use of the
owner of this book.

Within this publication the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation'.

• The manual is provided on an 'as is' basis except for warranties described in
the software licence agreement if provided.

• The software and this manual are protected by Trade secret and Copyright
laws.

The product described in this manual is subject to continuous developments and
improvements. All particulars of the product and its use (including the information in
this manual) are given by Acorn Computers in good faith.

There are no warranties implied or expressed including but not limited to implied
warranties or merchantability or fitness for purpose and all such warranties are
expressly and specifically disclaimed.

In case of difficulty please contact your supplier. Every step is taken to ensure that
the quality of software and documentation is as high as possible. However, it should
be noted that software cannot be written to be completely free of errors. To help
Acorn rectify future versions, suspected deficiencies in software and documentation,
unless notified otherwise, should be notified in writing to the following address:

Customer Services Department,
Acorn Computers Limited,
645 Newmarket Road,
Cambridge
CB5 8PD

ii 	 ARM software

All maintenance and service on the product must be carried out by Acorn Computers.
Acorn Computers can accept no liability whatsoever for any loss, indirect or
consequential damages, even if Acorn has been advised of the possibility of such
damage or even if caused by service or maintenance by unauthorised personnel. This
manual is intended only to assist the reader in the use of the product, and therefore
Acorn Computers shall not be liable for any loss or damage whatsoever arising from
the use of any information or particulars in, or any error or omission in, this manual,
or any incorrect use of the product.

Econet® and The Tube® are registered trademarks of Acorn Computers Limited.

ISBN 1 85250 001

Published by:
Acorn Computers Limited, Fulbourn Road, Cherry Hinton, Cambridge CB1 4.1N, UK

ARM software 	 iii

Contents

1. Architectural description 	 1
1.1 Introduction 	 1
1.2 Programmer's model 	 1

1.2.1 Memory organisation 	 2
1.3 Registers 	 2
1.4 Modes 	 4

1.4.1 Mode 0 	 5
1.4.2 Mode 1 	 5
1.4.3 Mode 2 	 5
1.4.4 Mode 3 	 6

2. Instruction set 	 7
2.1 Branch and branch with link 	 7

2.1.1 Assembler syntax 	 9
2.2 Data processing 	 9

2.2.1 Data processing on registers 	 13
22.2 Data processing with register and immediate operand 	16
2.2.3 Changing modes. 	 17

2.3 Single data transfer group 	 18
2.3.1 [Rn, off] is a pre-indexing addressing mode 	 20
2.3.2 [Rn,Rm] is a pre-indexed addressing mode 	 20
233 [Rn],off is a post-indexed addressing mode 	 20
2.3.4 [Rn],Rm is a post-indexed addressing mode 	 21

2.4 Block data transfer 	 22
2.4.1 Assembler syntax 	 24

2.5 Supervisor calls 	 25
3. Interrupts 	 27

3.1 Reset 	 27
3.2 Address exception trap 	 28
3.3 Abort 	 28
3.4 FIQ 	 29
3.5 IRQ 	 30
3.6 Undefined instruction trap 	 30
3.7 Software interrupt 	 30

4. Appendix A 	 32
4.1 Instruction speeds 	 32

5. Appendix B 	 34

iv 	 ARM software

5.1 Virtual memory concept 	 34
6. Appendix C 	 35

6.1 Instruction set summary 	 35
7. Appendix E 	 37

7.1 Notional stacking 	 37
7.1.1 Stacking 	 37

ARM software 	 v

1. Architectural description

1.1 Introduction
The ARM (Acorn RISC Machine) is an 84-pin, 32-bit single-chip CMOS
microprocessor designed for optimal support of high-level language and fast
real-time operation. It features:

• reduced instruction set architecture

• 32-bit data bus

• all instructions are the same size (32 bits)

• 26-bit address bus

• performance in excess of 3 million instructions per second (MIPS)

• 18 Mbyte/second memory bandwidth using 150 nS DRAMs

• one instruction executed on every clock cycle

• supports demand-paged virtual memory

• user and supervisor modes

• fast interrupt capability.

This manual is intended to serve as a programmer's reference for both
systems and applications programmers; the hardware system design aspects
such as bus structure, control and timing waveforms are presented in the
ARM hardware reference manual. The assembler for the ARM is described
in the ARM assembler reference manual.

1.2 Programmer's model
The ARM utilises an instruction pipeline to hold consecutive instructions.
While one instruction is manipulating data, a second is being decoded, and a
third is being fetched from memory. The execution speed is always one
instruction per clock cycle. During the execution of an instruction the
program counter is eight bytes on, drawing a fresh instruction into the pipe.

ARM software 	 1

Chapter 1

1.2.1 Memory organisation

1.3 Registers
The 24-bit PC shares a 32-bit register with various condition codes and
status bits forming a compact processor status word. This register holds the
ARM's current status and can be saved quickly and efficiently in one
processor cycle. The condition codes and status bits are known collectively
as the Processor Status Register or PSR. The programmer sees a bank of
sixteen 32-bit registers, RO to R15 when the ARM is in user mode. The
only two special purpose registers are R14 and R15. R15 contains the 24-bit
PC, and the PSR information making the full processor status word. R14 is
the subroutine Link register, which always receives a copy of R15 (the
PSW) on a branch with link instruction. Special bits in the processor's
instructions allow the PC and PSR to be treated together or separately.

2 	 ARM software

Architectural description

The format of register 15 is as follows:

31 	26 25 	 2 1 0

INIZICIVIIIFI 	PC (word aligned) 	 Im ml

6 PSR bits 	 2 PSR bits

The PSR bits consist of:

(1) flags N, Z, C, and V, the Condition Codes Register (CCR).
These flags are set both by the ARM's Arithmetic Logic Unit or ALU
and its barrel shifter. They can be altered by the programmer when the
processor is in user mode.

(2) flags I and F, which control the ARM's Interrupt mechanism.
The programmer cannot alter these bits while in user mode.

(3) bits m m which determine the processor's mode of operation.
They are only alterable by the programmer when the processor is not
in user mode.

The ARM executes instructions in one of four modes, one of which is user
mode. The user mode is intended to provide the environment for the
majority of application programs, while the other modes are intended for use
by the operating system software.

The full 32 bits of register 15 consist of:

• N (bit 31) : has dual use:
negative flag
signed less than flag.

• Z (bit 30) : Zero flag : set by ALU arithmetic and compares.

• C (bit 29) : multiple use:
Carry flag: set by ALU or by the barrel shifter
Absense of borrow: set by ALU
Rotate extend flag: set by barrel shifter

• V (bit 28) : is the oVerflow flag

• I (bit 27) : is Interrupt ReQuest (IRQ) disable

• F (bit 26) : is Fast Interrupt reQuest (FIQ) disable

ARM software 	 3

Chapter 1

• bits B25-B2 are combined with a processor-produced B1 zero and B0
zero to form a full word address which is then output on the address
bus

• m m (bits m0 and ml) determines which of four modes is selected.

The flags are read as logic high for the stated condition.

Access to bytes

Load and store operations can operate on either bytes or words. These
instructions can put a 26-bit value, with bits B0 and B I set as required, on
to the address bus. B0 and B1 simply represent the offset from the word
boundary and cause the data lines to access a particular byte.

The processor can access two types of data: bytes (8 bits) and words (32
bits). The data must lie on Byte and word boundaries respectively. The
memory is organised in byte-wide fashion and the 24+2-bit program-counter
PC is capable of counting to &3FFFFFC, giving the ARM a memory
capacity of 64 Mbytes, or 16 Mwords. Since each ARM instruction occupies
a word of memory, the PC moves in steps of four, and a valid PC value can
be held in 24 bits (address lines B2-B25), with the two least-significant bits
of zeroes (B0,B1) being added by hardware before the PC is placed on the
26 address lines.

1.4 Modes
The ARM has four modes of operation - user, supervisor, interrupt and fast
interrupt. The mode in which the processor runs is determined by the state
of bits 0 and 1 in the PSR. The processor has 25 physical registers, but the
state of the mode bits determine which 16 registers, R0-R15, will be seen by
the programmer. The four modes available are shown in the diagram on the
next page.

4 	 ARM software

Architectural description

Value of mode bits

	

0 	1 	2 	 3

User/Normal FIQ 	IRQ 	SVC/Abort/Undefined

	R0 	R0 	R0 	R0

	

I 	I 	 I 	 I

	

I 	I 	 I 	 I
R10 R10_FIQ 	R10 	R10

R11 R11_FIQ 	R11 	R11
R12 R12_FIQ 	R12 	R12
R13 R13_FIQ 	R13_IRQ 	R13_SVC
R14 R14_FIQ 	R14_IRQ 	R14_SVC
R15 R15 	R15 	R15

In each mode the conceptual registers R0-R9 and R15 correspond to the
physical registers R0-R9 and R15.

1.4.1 Mode 0
User mode is the normal program execution state; registers R0-15 exist
directly and in this mode only the N, Z, C and V bits of the PSR may be
changed.

1.4.2 Mode 1
The FIQ processing state has five private registers mapped to R10-14
(R10_FIQ-R14_FIQ) and a fast interrupt will not destroy anything in R10-
R14. Most FIQ programs, particularly those used for data transfer, will not
need to use R0-R9, but if they do, then R0-R9 can be saved in memory
using a single instruction.

1.4.3 Mode 2
The IRQ processing state has two private registers mapped to R13, R14
(R13_IRQ, R14_IRQ). If other registers are needed, their contents should be
saved in memory using the single instruction available for this purpose.

ARM software 	 5

Chapter 1

1.4.4 Mode 3
Supervisor mode (entered on SVC calls and other traps) also has two private
registers mapped to R13, R14 (R13_SVC, R14_SVC). If other registers are
needed, they too must be saved in memory.

Non-user modes are privileged and allow trusted software to take control in
a suitably protected memory style.

The code used to effect mode changes is shown in section 2.2.1.

6 	 ARM software

2. Instruction set

There are fourteen instructions determined by the bit pattern in B24-B27,
divided into five classes. The full instruction set is given in chapter 3. The
five classes are described in the following sections.

2.1 Branch and branch with link
Bits B24-B27 are set to 101x, giving two instruction types, the branch (B)
and the branch with link (BL).

There are 16 branch instructions and 16 branch-with-link instructions,
determined by the pattern in bits B28-B31.

The Branch instruction has a 24-bit word offset, to which two zero bits are
appended. The 26-bit value formed allows forward jumps of up to
+&2000004 and backward jumps of up to —&1FF FFF8 to be made. This is
sufficient to address the entire memory map, as the calculation wraps round
between the top and bottom of memory.

The Branch-with-link instruction writes the address of the next instruction
(the instruction following the BL) into R14. Due to pipelining the PC is
already eight bytes in advance of the BL instruction, so the instruction
following BL is at PC-4. The PSR is also copied into R14.

ARM software 	 7

Chapter 2

The encoding of bits B28 -B31 is as follows:

Code Mnemonic
Condition 	 Condition of flag(s)

0000 EQ 	EQual 	 Z set
0001 as 	Not Equal 	 Z clear 0010

 cs 	Carry Set / unsigned higher or same 	 C set
°oil cc 	Carry Clear / unsigned lower than 	 C clear
0100 on 	negative (Minus) 	 N set
0101 et. 	positive (PLus) 	 N clear
olio vs 	oVerflow Set 	 V set
out vc 	oVerflow Clear 	 V clear
loon Hr 	Higher unsigned 	 C set and Z clear
ion Lo 	Lower or Same unsigned 	 C clear or Z set
1010 ca 	Greater or Equal 	 (N set and V set) or (N clear and V clear)
loll LT 	Less Than 	 (N set and V clear) or (N clear and V set)
1100 GT 	Greater Than ((N set and V set) or (N clear and V clear)) and Z clear
11o1 Ls 	Less or Equal 	(N set and V clear) or (N clear and V set) or Z set
1110 AL 	ALways 	 any
1111 mv 	NeVer 	 none

Note: The assembler implements HS (Higher or Same) and Lo (LOwer than)
as synonymous with cs and cc respectively, giving a total of 18
mnemonics.

• If a link is involved, the mnemonic is expanded to the form BLxx.

• BNV and BLNV are no operations: the branch is never taken.

• BAL and BLAL may be shortened to B and BL.

The branch offset must take account of the prefetch operation, which causes
the PC to be two words ahead of the current instruction. An ARM assembler
will handle this situation. For example, the calculated jump offset in the
following piece of code is 000000 even though the jump is to a label, which
is two PC locations ahead.

Code generated Label Mnemonic Destination

EA000000 	L1 	BEQ 	L2
xxxxxxxx 	 xxx
xxxxxxxx 	L2 	xxx

8 	 ARM software

Instruction set

In spite of the prefetching of instructions the value written into the link
register is the address of the instruction following the Branch-and-link
instruction. Therefore after branching to a subroutine, the program flow can
return to the memory address immediately following the branch instruction
by writing back the R14 value into R15. Subroutines can be called by a BL
instruction. The subroutine should end with MOV PC, R14 if the link register
has not been saved on a stack, or LDMxx Rn, (PC) if the link register has
been saved on a stack addressed by Rn.

These methods of returning do not restore the original PSR. If the PSR does
need to be restored, MOV PC, R14 can be replaced by MOVS PC, R14 , or
LDMxx Rn, RC) by LDMxx Rn, (PC) A. However, care should be taken
when using these methods in modes other than user mode, as they will also
restore the mode and the interrupt bits. The last in particular may interfere
unintentionally with the interrupt system.

The significance of the different types of bracket and the A symbol are
explained in the ARM ASSEMBLER reference manual .

2.1.1 Assembler syntax

B 	(cond) expression

• (L) optional link

• (cond) is a two-character mnemonic as in the Table above (EQ, NE,
VS etc.). If absent then Always will be used.

• expression is the destination. The assembler calculates the offset.

2.2 Data processing
Bits B25-B27 are set to 00x, giving two broad types of instruction, data
processing on registers and data processing with register and immediate
operand.

Bits B21-B24 extend this to 16 data-processing types. Any one of the 16
conditional tests may be applied to the instructions and the data-processing
instructions will only be executed if the condition specified is true. The
conditions allowed are the same as those used in the branch instructions.

The bit pattern in B21-B24 instructs the processor to perform various
arithmetic operations:

ARM software 	 9

Chapter 2

Code 	Mnemonic 	Operation

0101 	ADC 	 ADd with Carry
0100 	ADD 	 ADD
0000 	AND 	 AND
1110 	BIC 	 BIt Clear
1011 	CMN 	 CoMpare Negated
1010 	CMP 	 CoMPare
0001 	EOR 	 Exclusive OR
1101 	MOV 	 MOVe
1111 	MVN 	 MoVe Not
1100 	ORR 	 logical OR
0011 	RSB 	 Reverse SuBtract
0111 	RSC 	 Reverse Subtract with Carry
0110 	SBC 	 SuBtract with Carry
0010 	SUB 	 SUBtract
1001 	TEQ 	 Test EQuivalence
1000 	TST 	 TeST and mask

ADC causes an addition to be performed on operand] and operand2 and the
carry flag. The result is stored in the destination register. This instruction
can be used to implement multi-word additions.

ADD causes an addition to be performed on operand] and operandi. The
result is stored in the destination register, for example,

ADD R0,R1,R2 ;R0-R1+R2
ADDS R0,R1,#1 ;R0=R1+1 and set N,Z,C,V

AND performs a bitwise AND on operand] and operand2. The result is
stored in the destination register.

Bic performs a bitwise inversion on operand2, then a bitwise AND is
performed on operand] and the result of the inversion. The result is stored
in the destination register.

CMN add operand2 to operand]. This compare allows a negative data field
to be created for a compare. Flags N, Z, C and V are altered.

CMP subtract operand2 from operandi. Flags N, Z, C and V are altered.

EOR performs a bitwise Exclusive OR on operand] and operand2. The
result is stored in the destination register.

10 	 ARM software

Instruction se! MOV

 causes the operand to be placed unchanged in the destination register,
for example,

MOV R0,R1,LSL#2

MVN causes the operand to be evaluated and its bitwise inverse to be placed
in the destination register. The contents of register 1 are shifted left by 2
bits and transferred to register 0, for example,

MVN R2,R3

Register 2 is set to the bitwise inverse of the contents of register 3. ORR

 performs a bitwise OR on operand] and operand2. The result is stored
in the destination register.

RSB subtracts operand] from operand2. The result is stored in the
destination register.

RSC subtracts operandi from operand2 if the carry flag is set. If the carry
flag is clear, operand2—operand1-1 is calculated. The result is stored in the
destination register.

sac subtracts operand2 from operandi if the carry flag is set. If the carry
flag is clear, operandl—operand2-1 is calculated. The result is stored in the
destination register. This instruction can be used to implement multi-word
subtractions.

sus subtracts operand2 from operand]. The result is stored in the
destination register, for example:

SUBS R4,R2,R0 ;Do least significant word
;of subtraction

SBC R5,R3,R1 ;Do most significant word,
;taking account of the borrow

;This does the 64 bit subtraction
;(R5,R4)-(R3,R2)-(R1,R0)

The result is stored in the destination register.

TEQ performs a bitwise exclusive OR between operand] and operand2.

TST performs a bitwise AND operation between operand] and operand2.

In the case of TEQ and TST the N and V flags are altered according to the
result, V is unchanged and C is set to the last bit shifted out by the barrel
shifter, or is unchanged if no shifting took place.

ARM software 	 11

Chapter 2

In the case of CMP,CMN,TEQ and TST, the ARM assembler sets bit 20
automatically.

Mnemonic Meaning 	 Operation 	 Flags
Affected

we 	Add with Carry 	 Rd:= Rn+operand+C 	 N,Z,C,V
ADD 	Add 	 Rd= Rn+operand 	 N,Z,C,V
AND 	And 	 Rd= Rn AND operand 	N,Z,C
sic 	Bit Clear 	 Rd= Rn AND (NOT(operand)) N,Z,C
CNN 	Compare Negated 	Rn+operand 	 N,Z,C,V
GNP 	Compare 	 Rn-operand 	 N,Z,C,V
EOR 	Exclusive Or 	 Rd:= Rn EOR operand 	N,Z,C
NOV 	Move 	 Rd:= operand 	 N,Z,C MVN
	Move Not 	 Rd:= NOT operand 	 N,Z,C

ORR 	Logical Or 	 Rd:= Rn OR operand 	N,Z,C
RSB 	Reverse Subtract 	Rd:= operand-Rn 	 N,Z,C,V
RSC 	Reverse Subtract with Carry Rd:= operand-Rn-l+C 	N,Z,C,V
sac 	Subtract with Carry 	Rd:= Rn-operand-1+C 	N,Z,C,V
SUB 	Subtract 	 Rd:= Rn-operand 	 N,Z,C,V
Tao 	Test Equivalence 	Rn EOR operand 	 N,Z,C
TST 	Test and Mask 	 Rn AND operand 	 N,Z,C

• The borrow operation on the RSC and SBC instructions is performed
by adding the carry due to the hardware configuration of the CPU

• Rd is the destination register nextp Rn is a source register

• S2 is a register, possibly shifted by a constant or by a register, or an
8-bit data value shifted by a constant

• Cis the carry bit in the PSR

• the logical operations set flags N and Z from the ALU, C from the
shifter, V is unaffected by the instruction

• the flags are not copied to the CCR in R15 unless bit 20 of the
instruction is set

• the arithmetic operations set all the flags from the ALU.

The ALU produces the C, V, N and Z signals which then become (if
allowed by the instruction or the programmer) the CCR flags of the PSR.
The barrel shifter accepts the PSR C flag on certain types of shift, and
produces its own C signal. On logical operations, the barrel shifter's C
signal rather than the ALU's signal will load the PSR.

12 	 ARM software

Instruction set

ARM registers are linked to the ALU via two 32-bit read bus lines. On the
first part of an instruction cycle (clock phase 1) the ALU receives two
operands simultaneously; one passes from register to ALU directly, the other
passes through the barrel shifter and may come from a register or from an
immediate field in the instruction. The ALU performs its task immediately,
and passes the result back to a register in the second half of the instruction
cycle (clock phase 2).

2.2.1 Data processing on registers
(B25-B27 bit pattern 000)

	

31 	27 24 	20 19 	15 	11 	3

	

I 	I 	I 	I 	I 	I 	I 	I

I Cond|000| Opc I S I Rn I Rd I Shift I Rm I R~R->R

• Rd is the destination register

• Rn and Rm are both source registers, and the contents of Rm can be
shifted by a constant or by the contents of a register

• Opc is the opcode bit pattern as shown in the data processing opcodes
table

• Shift is an 8 bit field specifying the operation of the barrel shifter.

The following four shift-types operate on the Rm register, shifting the
contents by nnnnn bits:

nnnnn000 logical left 	by 1 to 31 bits
nnnnn010 logical right 	by 1 to 32 bits
nnnnn100 arithmetic right by 1 to 32 bits
nnnnn110 rotate right 	by 1 to 31 bits

Rotate right one bit does not require nnnnn:

00000110 rotate right 	one bit with extend

Note: when the shift is by '1 to 32 bits' then zero is taken to mean 32 bits.

ARM software 	 13

Chapter 2

The following four shift-types operate on the Rm register, shifting the
contents by N bits, where register Rsss holds the value of N:

Rsss0001 logical left 	by Rs
Rsss0011 logical right 	by Rs
Rsss0101 arithmetic right by Rs
Rsss0111 rotate right 	by Rs

Shifts specified by Rs require one additional execution cycle. Only the least
significant byte of Rs is used, and signifies a shift of 0 to +255 bits. If
shifting operations are not required, the bit-pattern of the shift field is set to
00000000. This is decoded as logical shift left 0 bits, and the carry bit is not
changed by this action.

The shifting action is as follows, where n represents the number of bits
shifted:

Logical shift left

C <- - bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb <- - 0

The n least significant bits become zero, the carry becomes b(32-n). If the
shift amount is zero, no shift is performed and the carry flag is not altered.
If the shift amount lies in the range 1 to 32, the carry flag is set to b(32-n).
If the shift amount is greater than 32, the carry flag is set to zero.

Logical shift right

o - -> bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb - -> C

	 >

The n most significant bits become zero, the carry becomes b(n-1). If the
shift amount is zero, no shift is performed and the carry flag is not altered.
If the shift amount lies in the range 1 to 32, the carry flag is set to b(n-1).
If the shift amount is greater than 32, the carry flag is set to zero.

Arithmetic shift right

- - -> xbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb - -> C

I 	I >

<- - -

14 	 ARM software

Instruction set

The n most significant bits become equal to b31 (that is on every single
shift, bit 31 is duplicated).
If the shift amount is zero, no shift is performed and the carry flag is not
altered. If the shift amount lies in the range 1 to 32, the carry flag is set to
b(n-1). If the shift amount is greater than 32, the carry flag is set to b31.

Rotate right

< 	 <
I 	 I
- -> bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb - - ->C
	 >

On every bit of the shift, the content of b0 transfers to b31. The carry
becomes b(n-1). That is the carry is set to the last bit rotated into b31.
When no shift is performed the carry bit is not altered.

Rotate right with extend

< 	 <
I 	 I
- -> bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb - - ->C
	 >

n is always 1. The contents of the carry transfers to b31, the contents of b0
transfers to the carry.

The use of S (the set condition codes bit) will be described in the section
below dealing with the second data processing instruction.

Syntax
Mnemonic {coed) [R,) [RI Rd [,Rn),Rm {,SHIFT)

• [cond) two character conditional code mnemonic

• (s) set condition codes if S present (the ARM assembler will
automatically set condition codes for CMP, CMN, TEQ, TST)

• (p) make Rd = R15 in instructions where Rd is not actually written to.
Also sets S bit. Used for changing PSR. (see section 2.2.5)

	

ARM software 	 15

Chapter 2

• Rd, Rn and Rrn are expressions evaluating to a register number

• (Rn) is not required in instructions with only two operands

• (SHIFT) is (shiftname register) or (shiftname #expression)
or (RRX).

2.2.2 Data processing with register and immediate operand
(B25-B27 bit pattern 001)

	

31 	27 24 	20 19 	15 	11 	7

	

I 	I 	I 	I 	I 	I 	I 	I

|Cond |001| Opc I S I Rn I Rd I Shf I Imrn I R-4—>R

• Imm is an 8-bit immediate field. The processor supplies bits B8-B31
as zero, and thereby zero-extends the field to 32 bits

• Shf is a 4-bit field defining a rotate right by Shf*2 of the 32-bit zero
extended 1mm field

Syntax
Mnemonic (cond) (s) {P} Rd {, Rn}, #expression

• frond) two character conditional code mnemonic

• (s) set condition codes if S present (the ARM assembler will
automatically set condition codes for CMP, CMN, TEQ, TST)

• 0) make Rd = R15 in instructions where Rd is not actually written to.
Also sets S bit. Used for changing PSR

• Rd and Rn are expressions evaluating to a register number

• (Rn) is not required in instructions with only two operands

• #expression the assembler will attempt to generate a shifted immediate
8-bit field to match the expression. Any number which cannot be
expressed as a rotation by an even number of a value in the range
0-255 will be rejected. For example,

16 	 ARM software

Instruction set

Eg: Mnemonic Rd,#&FF ; ■ 11111111 No error
Mnemonic Rd,#&81 ; ■ 10000001 No error
Mnemonic Rd,#&101; -100000001 Error reported by

the assembler

The assembler fails when asked to process a number where the distance
between the highest and lowest bit exceeds 8-bit positions.

The S bit, bit 20; the (S) mnemonic.

S should be reset to zero to preserve the current condition codes (the flags),
and set to 1 to allow their update:

— when Rd is not R15, the condition codes are updated from the ALU
flags

— when Rd is R15, the PSR is overwritten by the corresponding bits in
the ALU result, though some bits can only be changed in particular
modes.

So normal moves to R 15 (that is Rd) are only 24 bits, moves with S set are
28 bits (full PC and user PSR: in non-user modes all 32 bits are used) while
the result is used to set the PSR bits by the assembler only in CMP, CMN,
TST, TEQ instructions when Rd is R15. For example:

ADDEQ R2,R4,R5
TEQS R4,#3
SUB R4,R5,R7,LSR R2

When Rm is R15, the value of the PC plus the PSR is presented to the
ALU. When Rn is R15, the PC is presented without the PSR, that is those
bits are 0.

2.2.3 Changing modes.
A TEQP instruction is used to change modes. For example:

TEQP R15,#2 changes to IRQ mode.
TEQP R15,#0 changes to user mode.

There is a one clock-cycle delay in mode change instructions due to the

ARM software 	 17

Chapter 2

pipelined nature of the processor. When a data-processing instruction is used
to change processor mode, the next instruction has already been fetched and
is waiting to be executed. If this instruction attempts to access any of
registers R10-R14, it will use the wrong one because re-mapping has taken
place. Registers R0-R9 are safe to use, because they will not be affected by
the mode change.

A no-operation instruction such as BNV should be given to the processor to
allow the re-mapping to take place before using R10-R14.

The action of TEQP R15,#n is subtle. Whenever R15 is presented to the
processor as the Rn register, 24 bits are presented; the PSR bits are supplied
as zero. The TEQ causes the value #n to be written into the register, and the
P causes the PSR bits (now altered by #n) to be written back into R15.
Since two of the PSR bits are the mode-control bits, the processor assumes
its new mode.

The First Devices

The first CPUs have two minor faults in the shift logic:

• when using RRX shifts with S set, the carry out is the result of ORing
the top and bottom bits of the source together, instead of just the
bottom bit.

• when using ROR with a register controlled shift and the register is
greater than 31, the carry out will always be zero, instead of the bit
MOD 32.

2.3 Single data transfer group
Bits B24-B27 are set to 1 1 xx, giving four basic instruction types of the LDR
(Load register) and STR (Store register) variety.

These instructions can load any register or save any register using any of the
registers as a base-address pointer, which may then be modified by an offset.
Loading or saving is specified by the US bit, and the direction of movement
from the base by bit 23.

18 	 ARM software

Instruction set

Any one of the 16 conditional tests may be applied to these instructions.

• Rn is the index register

• The Wb bit gives optional auto-increment and decrement addressing
modes

• US 1: Rd becomes the operand that is LDR; data into register

• US 0: the operand becomes Rd that is STR; data out of register

• B/W 1: transfer byte between register and any byte address. On load
the byte will be zero extended to a word

• B/W 0: transfer word between register and any word aligned address.
If the address is not word aligned, the result of the transfer is not
defined

• T 1: forces the translate output (the TRANS pin, pin 10) to be active
during the data-transfer cycle, thereby allowing programs running in
supervisor mode to load and save user memory areas

• The eight shift control bits are the same as those described in the data
processing instructions

• the offset is either (offset) or (Rm (shifted)).

ARM software 	 19

Chapter 2

23.1 [Rn,#off] is a pre-indexing addressing mode
Rn is the index register, modified by the 12-bit binary offset before it is
used. The calculated address Rn+offset is only written back to Rn if the Wb
bit is I. For example:

Action: LOAD/STORE to/from the indexed address
Then only if Wb=1:
An <- Rn+offset when U/D
Rn <- Rn-offset when U/D

2.3.2 [Rn,Rm] is a pre-indexed addressing mode
Rn is the index register, modified by the offset, which is in register Rm,
before it is used. The calculated address Rn+offset is only written back to
Rn if the Wb bit is 1. For example:

Action: LOAD/STORE to/from the indexed address

Then only if Wb=1:
Rn <- Rn+Rm(shifted) when U/D =1
Rn <- Rn-Rm(shifted) when U/D =0

In both [Rn,#off] and [Rn,Rm] the value within the square brackets is
evaluated and used as an address first: the processor evaluates Rn +1- offset
and uses the result as the store or load address, and makes a temporary note
of the address. Only if the Wb bit is set to 1 is the temporary value copied
back into Rn.

2.3.3 [Rn],off is a post-indexed addressing mode
The index register is Rn; after it has been used, it is modified by the 12-bit
binary offset. For example:

Action: LOAD/STORE to/from the address in Rn
Then always:
Rn <- Rn+offset when U/D =1
Rn <- Rn-offset when U/D =0

20 	 ARM software

Instruction set

2.3.4 [Rn],Rm is a post-indexed addressing mode
The index register is Rn, but in this case the offset is in register Rm, and
may be optionally modified before it is used. As described in section 2.3.3,
Rn takes on its new value after it has been used. For example:

Action: LOAD/STORE to/from the address in Rn

then always:
Rn <- Rn+Rm{shifted} when U/D

Rn <- Rn-Rm{shifted} when U/D ■0

The single data-transfer instructions will never affect the PSR, even when
Rd or Rn is R15.

When using the contents of the PC register as the base address it must be
remembered that it contains an address 8 byte addresses further on than that
of the start of the current instruction.

Syntax
Mnemonic (cond) lb) (T) Rd, addressn

• frond) two-character condition code mnemonic

• (a) if B is present then a byte transfer will take place, otherwise a
word transfer will take place

• (T) if T is present the translate bit will be set

• Rd is an expression evaluating to a valid register number

• address can be:

1. expression - the assembler will attempt to generate an instruction
using the PC as a base and a corrected immediate offset to address the
location given by evaluating the expression. If out of range, an error
will be generated

2. pre-indexed

[Rn] 	 offset of zero

[Rn,#expression](!) 	offset of (expression)

(!) 	 writeback the base register if present.

[Rn,(+or—)Rm(,shift)](!) 	offset of +or— contents of (index)

ARM software 	 21

Chapter 2

register,shifted by (shift).

Rn and Rm are expressions evaluating to a valid register number

3. post-indexed

[Rn],#expression 	 offset of (expression)

[Rn], {+or—)Rm(,shift) 	offset of +or— contents of (index)
register shifted as in 2. above

Some examples are:

STR R1,PLACE ;generate PC relative offset to address
;PLACE

STR R1,(BASE,INDEXI! ;store R1 at BASE+INDEX (both
; register contents) and write
; back address to BASE

STR R1,(BASE),INDEX ;store R1 at BASE and writeback
;BASE+INDEX to BASE

LDR R1,[BASE,417) 	;load R1 from contents of
;BASE+17
;Don't writeback

LDR R1,[BASE,INDEX,LSL #2) ;load R1 from contents of
;BASE+INDEX*4

2.4 Block data transfer
Bits B24-B27 are set to 100x, giving two instruction types, LDM (Load
multiple) and STM (STore Multiple). These instructions can load any
registers or save any registers using any of the registers as the memory
address (the base). The base is incremented or decremented a number of
times to enable the register contents to be transferred to and from memory.
Loading or saving is specified by the L/S bit, and the direction of movement
from the base by the U/D bit.

The purpose of these instructions is to permit a defined register group to be
transferred into contiguous memory words on consecutive CPU cycles.

22 	 ARM software

Instruction set

Any one of the 16 conditional tests may be applied to these instructions.

• Rn holds the base address

• US is the Load/Store bit:

When US 4 data is stored in memory — STM
When US =1 data is loaded into registers — LDM

• operand: this is a bit-image of the registers which need to be
transferred.

Note: the-bit image is interpreted directly by the ARM hardware and
the speed of block data transfer operations is directly proportional to
the number of registers involved

• U/D is the Up/Down bit:

1000 	1 for up post-increment

1001 	1 for up pre-increment

1000 	0 for down post-decrement

1001 	0 for down pre-decrement

Register values are stacked in register order. This is always the case
and cannot be altered. The lowest register always occupies the lowest
memory location and registers contents are written to, or read from,

ARM software 	 23

Chapter 2

memory starting with the lowest numbered register.

• the P bit. The PC is represented by bit B15=1, and the condition codes
are saved with it in the case of a STACK (STM) instruction. When
B15=1 in an UNSTACK (LDM) instruction, the bits of the PSR are
loaded if the P bit (B22) is I and not loaded if it is 0

• Wb is the writeback bit. The Wb bit indicates whether the base
register is to be updated, as explained in the Single Data Transfer
Group of instructions. When writeback is specified, the base is written
back during the second cycle of the instruction. During a stacking
operation (STM), the first register is written out during the first cycle.
An STM which includes storing the base, with the base as the lowest-
numbered register in the list, will therefore store the unchanged value,
whereas with a base register which is not the lowest-numbered it will
be the new value which is stored. An LDM will always overwrite the
updated base, if the base is in the list.

With the writeback bit set these instructions can be used to stack and
unstack multiple registers. (See appendix E.)

Special notes:

1 When the base is the PC, the PSR bits will be used to form the address as
well, so unless all interrupts are enabled and all flags are zero (making bits
B26-B31 of R15 all zero) an address exception will occur. Writeback is
never allowed when the base is the PC.

2 In the case of a stack/STM instruction, and when the processor is in user
mode, the P bit is ignored. In other modes it may be used to force transfers
from the user-mode register-bank. In this case, writeback will also be to the
user-mode register-bank, though the base-register will be fetched from the
current bank. In this situation, the writeback must be turned off (Wb=0).

3 The action of the instructions when (operand) is zero is undefined and
may affect registers or store.

2.4.1 Assembler syntax
Mnemonic frond) FD/ED/FA/EWIA/IB/DA/DB Rn (!), Rlist(^)

• frond) two-character condition code mnemonic

• FD/ED/FA/EA define pre/post indexing and up/down bit. It is assumed
that these instructions will normally be used for stack operations. The

24 	 ARM software

Instruction set

F and E refer to notion of a "full" or "empty" stack, i.e. whether the
stack poiner register is pointing to a word holding valid data (full) or a
word holding data which is not needed (empty). More information on
the use of stack is given in appendix E

IA/IB/DA/DB are mnemonics used for non-stacking operations and
mean Increment After, Increment Before, Decrement After and
Decrement Before. For further information the LDM and STM
mnemonics, see the ARM assembler manual

• Pit is an expression evaluating to a valid register number

• Rlist can be either a list of registers enclosed in () or an expression
evaluating to the 16 bit operand

• 0) is the optional writeback {*}

• means set PSR if present (note different meanings for PSR bit in
LDM and STM)

For examples

LDMFD SP!,(R0,R1,R2) ;unstack 3 registers

STMIA BASE,{R0 -R15} ;save all regs

2.5 Supervisor calls
bits B24-B27 are set to 1111. This is the software interrupt, SWI. Any one
of the 16 conditional tests may be applied to this single instruction.

The PC word and PSR are saved in R14_SVC, with the PC adjusted to
point to the word after the SWI instruction. The PC 24 bits are set to 8
(4*2) and mm of the PSR is set to SVC mode and the processor continues

ARM software 	 25

Chapter 2

(see the section on traps and vectors).

Syntax
SWI(cond) expression

• (cond) two-character condition code mnemonic

• the expression is ignored by ARM, but can be interpreted by other
hardware. In the ARM evaluation system SWI with its expression is
used to link ARM machine code to the Acorn 6502 MOS as used in
the BBC Microcomputer. For further information on the SWI calls to
the I/O MOS, consult the ARM Assembler reference manual

For examples:

SWI ReadC

SWI Writel+"k"

26 	 ARM software

3. Interrupts

Interrupts are channeled through vectors in RAM:

vector summary

Vector 0 : 0000000 (0) reset

1 : 0000004 (4) undefined instruction

2 : 0000008 (8) software interrupt

3 : 000000C (12) abort (prefetch)

4 : 0000010 (16) abort (data)

5 : 0000014 (20) address exception

6 : 0000018 (24) IRQ

7 : 000001C (28) FIQ

The interrupt priority is:

Reset 	 (highest)
Address exception
Data Abort
FIQ
IRQ
Prefetch Abort
Undefined Instruction
Software interrupt 	 (lowest)

3.1 Reset
When reset goes low ARM will stop the currently executing instruction and
start executing no-ops.

When reset goes high again it will:

• save R15 in R14_SVC

• set M0, MI to SVC mode and set the F and I bits in the PC word

• jump to RAM vector 0 by setting the PC to 0 (4*0).

ARM software 	 27

Chapter 3

Note: due to ARM pipelining the processor actually saves (R15)-4 in the
SVC register R4.

3.2 Address exception trap
When an address exception that is a data transfer at an address above
&3FFFFFF is seen, ARM will:

(1) complete the instruction if it is a block data transfer type, eg: LDM, or
return to the state just before execution (single data transfer type eg:
LDR) - see section 3.3.

(2) save R15 in R14_SVC

(3) set M0, M1 to SVC mode and set the I bit in the PC word

(4) jump to RAM vector 5 by setting the PC to 20 (4*5).

A return from this trap can be achieved by subtracting 4 from R14_SVC and
placing the result in R15 and PSR. This will return the PC to the instruction
after the one causing the trap.

Normally an address exception will prove fatal, at least for the currently
running task which caused IL However, in a simple implementation the trap
might be used to send an appropriate warning message to an I/O device.

A more sophisticated use would be to invoke a paged-memory system using
a 32-bit address bus.

LDM and STM (see section 2.4) will only cause address exceptions on the
first data transfer of the instruction. A transaction which starts in the legal
area and moves into the illegal area will not cause an address exception, and
will attempt to access store addressed by the bottom 26 bits.

3.3 Abort
The abort signal is externally generated by a memory management system to
alert the processor that a current instruction is handling memory incorrectly
or that a virtual-memory system is in use. ARM checks for existence of
abort at the end of the first phase of each bus cycle. Note that on some
ARM development PCBs the abort line may be tied to ground and therefore
be inoperative.

28 	 ARM software

Interrupts

When successfully aborted, the ARM will respond in one of two ways:

(1) if the abort occurs during an instruction prefetch, the prefetched
instruction is marked as invalid; and when it comes to execution, it is
re-interpreted as shown in the examples below

(2) if the abort occurs during a data access, the action depends upon the
instruction type. Data transfer instructions (e.g. LDR) are aborted as
though the instruction had not been executed. The LDM and STM
instructions are completed, and if writeback is set, the base is always
updated, even if the instruction would have overwritten it (i.e. LDM
with base in list). Then:

For example:

• save R15 in R14_SVC

• set M0, MI to SVC mode and set the I bit in the PC word

• jump to RAM vector 3 or 4 by setting the PC to 12 (4*3) for a
prefetch abort, or 16 (4*4) for a data abort.

Continue after an instruction prefetch abort by subtracting 4 from R14_SVC
and placing the result in R15 and PSR. A data-access abort requires any
auto-indexing to be reversed before returning to re-execute the offending
instruction, the return being achieved by subtracting 8 from R14_SVC and
placing the result in R15 and PSR.

3.4 FIQ
The FIQ (Fast interrupt request) signal is designed to be used as a data
transfer or channel process. Its effect may be masked out by setting the F
flag in the PSR (but note that this is not possible from user mode). ARM
checks for the existence of FIQ at the end of instructions. When the ARM
responded to a fast interrupt request it will:

(1) save R15 in R14_FIQ

(2) set M0, M1 to FIQ mode and set the F and I bits in the PC word

(3) jump to RAM vector 7 by setting the PC to 28 (4*7).

Return from FIQ by programming the assembler line: SUBS
PC,R 14_FIQ,#4.

ARM software 	 29

Chapter 3

3.5 IRQ
The IRQ (Interrupt request) signal is a normal interrupt. It has a lower
priority than FIQ, and is masked out when a FIQ sequence is entered. Its
effect may be masked out at any time by setting the I bit in the PC (but
note that this is not possible from user mode). ARM checks for the
existence of IRQ at the end of instructions. When successfully interrupted by
an IRQ, the ARM will:

(1) save R15 in R14_IRQ

(2) set M0, MI to IRQ mode and set the I bit in the PC word

(3) jump to RAM vector 6 by setting the PC to 24 (4*6).

Return from IRQ by programming the assembler line: SUBS
PC,R14_1RQ,#4.

3.6 Undefined instruction trap
Undefined instructions are identical to supervisor calls except that the
program flow diverts to a different vector. The undefined instructions are
reserved for future expansion and the trap may be used for the emulation of
future instruction set enhancements, such as floating-point arithmetic. When
an undefined instruction is seen, ARM will:

(1) save R15 in R14_SVC

(2) set M0, MI to SVC mode and set the I bit in the PC word

(3) jump to RAM vector 1 by setting the PC to 4 (4*1).

Return from trap by transferring R14_SVC to R15 and PSR.

3.7 Software interrupt
The software interrupt is used for entering supervisor mode (mode 3). From
mode 3, it is possible to select any other mode. ARM will:

(1) save R15 in R14_SVC

(2) set M0, MI to SVC mode and set the I bit in the PC word

(3) set PC to 8 (4*2).

30 	 ARM software

Interrupts

Return from SWI by transferring R14_SVC to R15 and PSR. See the
supervisor call instruction in section 2.

These are byte addresses, and each group of four bytes will normally contain
a 32-bit branch instruction pointing to the relevant routine. The exception is
FIQ, where the routine might reside at 000001C onwards.

ARM software 	 31

4. Appendix A

4.1 Instruction speeds
Due to the pipelined architecture of the CPU, instructions overlap
considerably. In a typical cycle one instruction may be using the data path
while the next is being decoded and the one after that is being fetched. For
this reason the following table presents the incremental number of cycles
required by an instruction, rather than the total number of cycles for which
the instruction uses part of the processor. Elapsed time (in cycles) for a
routine may be calculated from these figures.

If the condition is met the instructions take various S and N cycles:

R—# ->Rd 1 S 	+ ShiftTime + R15time

R~R ->Rd 1 S 	+ ShiftTime + R15time

LDR 	2 S + 1 N 	+ ShiftTime + R15time

STR 	2 N 	+ ShiftTime

LDM 	(n+1)S + R15time

STM 	(n-1)S + 2 N

B,BL 	2S+1N

SWI 	2S+1N

ShiftTime is 	1 S for SHIFT(Rs)
R15time is 	1 S + 1 N if R15 written

n is the number of registers transferred in a LDM or STM.

If the condition is not true all instructions take one S cycle.

S is a sequential cycle or a cycle which does not require memory at all.
N is a non-sequential cycle.

32 	 ARM software

Appendix A

With the initial second-processor product S cycles take 3/200. N cycles
take 6/200. This corresponds to the 20MHz crystal frequency divided by 3
or 6.

ARM software 	 33

5. Appendix B

5.1 Virtual memory concept
On most systems using the ARM only part of the 64Mbyte memory capacity
will be represented by physical memory, but by using virtual memory
techniques an ARM program can be written which makes use of the total
memory.

The mechanism for supporting virtual memory is to provide a limited
amount of high-speed memory that can be accessed by the CPU directly,
while maintaining an image of a larger amount of memory on secondary
storage devices such as hard disc. When the CPU tries to access an address
which exists in the virtual memory but not in the physical memory, the
attempt is postponed while the address map of the physical memory is
adjusted so that it conforms with the virtual address requested The ARM
has the capability to stop an instruction which references memory that is not
physically present, alter the memory, and re start the instruction. The code to
do this is available from Acorn.

34 	 ARM software

6. Appendix C

6.1 Instruction set summary

ARM software 	 35

Chapter 6

The instructions of the form Cond 110X and Cond 1110 and marked "u'"
will cause undefined instruction traps. These codes are reserved for future
internal or coprocessor expansion.

36 	 ARM software

7. Appendix E

7.1 Notional stacking

7.1.1 Stacking

Push to stack
Various instructions may be used to save the ARM registers on a stack.

There are four types of instruction which PUSH register values on to a
stack. They are:

STMFD 	Full stack, Descending (uses Pre-Decrement)
STMED 	Empty stack, Descending (uses Post-Decrement)
STMFA 	Full stack, Ascending (uses Pre-Increment)
STMEA 	Empty stack, Ascending (uses Post-Increment)

For example: STMEA Rn ! , {R6, R3, R7, R8 }

which may also be written: STMEA Rn ! , { R6-R8, R3}.

STMEA in action
Prior to the instruction, assume that a stack holding three values already
exists, and that more values need to be pushed on to it

The stack is ascending, and the location currently pointed to is deemed to be
empty. Then, after STMEA Rn!, (R6,R3,R7,R8) the stack grows.

ARM software 	 37

Chapter 7

Notice that register values are stacked in register order. This is always the
case and cannot be altered. The lowest register always occupies the lowest
memory location and registers are placed on, or removed from, the stack
starting with the lowest numbered register. This can be seen in the next
example, which shows the order of stacking following two 'full stack
descending' instructions.

STMFD in action
For example: STMFD Rn!, {R6, R3, R7, R8 }
STMFD For! , {R0-114 }

Pop from stack

There are four types of instruction which pop register values from a stack.
They are:

38 	 ARM software

Appendix E

LDMEA 	Empty stack, Ascending. (uses Pre-Decrement)
LDMFA 	Full stack, Ascending. (uses Post-Decrement)
LDMED 	Empty stack, Descending. (uses Pre-Increment)
LDMFD 	Full stack, Descending. (uses Post-Increment)

To recover one set of the saved registers from the stack set up by STMFD
R(\ em n!, { R0-R4 }, the instruction LDMFD R n!, {R0-R4 } would be used.
Afterwards, Rn will point to location Lx.

Special points

• When Rn is in the stacking list.

The base register Rn may be pushed onto the stack and if write-back
is not in operation, no problem will occur. If write back is in
operation, the STM is performed in the following order.

Write lowest-numbered register to memory.
Perform the write back.
Write other registers to memory in ascending order.

Thus, if Rn is the lowest-numbered register in the list, its original
value is stored. Otherwise, its written back value is stored.

If Rn is popped from the stack, the pop operation will continue
successfully: the entire block-transfer runs on an internal copy of the
Rn value, and will not be aware that register Rn has been loaded with
a new value. (The writeback action occurs in the second cycle of the
instruction.)

Pushing Rn is not forbidden when writeback is in operation: but if Rn

ARM software 	 39

Chapter 7

is not the lowest-numbered register then at the end of the second cycle
it will accept the written back value.

• When R15, the PC register, is in the stacking list.

When R15 is pushed on to the stack, all the PSR condition codes are
saved as well.

When R15 is popped from the stack, the PSR condition codes are only
included if the symbol A is coded following the register list. The
condition codes included will in any case only be those which may be
modified in the currently selected ARM mode. For example,
LDMFD SP!,{FP,PC}^

• When Rn, the base register, is R15.

When the PC is used as the base register, the PSR condition code bits
form part of the 32-bit address. Unless all flags are zero and the
interrupts enabled, an address greater than &31.11-1-11.. will be formed.
This is an address exception and will be noticed by the ARM
processor.

Writeback is switched off when PC is the base register.

• The register list (R0,R1,etc) is used by the assembler to form a 16 bit
operand where the setting of a bit indicates which register contents
will move.

• In order to force the saving of the user mode registers when executing
in a different mode, A should be coded following the register list. For
example,
STMFD R0,{110 -R15}^

• The operation of placing or removing registers to and from the stack
starting with the lowest-numbered register is independent of stack type
and exists to ensure that if a data abort occurs during a machine
instruction, the PC is preserved.

40 	 ARM software

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52

