
reference manual

ARM Evaluation System

Acorn OEM Products

ARM assembler

Part No 0448,008
Issue No 1.0

4 August 1986

Copyright Acorn Computers Limited 1986

Neither the whole nor any part of the information contained in, or the product
described in, this manual may be adapted or reproduced in any material form except
with the prior written permission of the copyright holder. The only exceptions are as
provided for by the Copyright (photocopying) Act, or for the purpose of review, or
in order for the software herein to be entered into a computer for the sole use of the
owner of this book.

Within this publication the term 'BBC' is used as an abbreviation for 'British
Broadcasting Corporation'.

• The manual is provided on an 'as is' basis except for warranties described in
the software licence agreement if provided.

• The software and this manual are protected by Trade secret and Copyright
laws.

The product described in this manual is subject to continuous developments and
improvements. All particulars of the product and its use (including the information in
this manual) are given by Acorn Computers in good faith.

There are no warranties implied or expressed including but not limited to implied
warranties or merchantability or fitness for purpose and all such warranties are
expressly and specifically disclaimed.

In case of difficulty please contact your supplier. Every step is taken to ensure that
the quality of software and documentation is as high as possible. However, it should
be noted that software cannot be written to be completely free of errors. To help
Acorn rectify future versions, suspected deficiencies in software and documentation,
unless notified otherwise, should be notified in writing to the following address:

Customer Services Department,
Acorn Computers Limited,
645 Newmarket Road,
Cambridge
CB5 8PD

ii 	 ARM assembler

All maintenance and service on the product must be carried out by Acorn Computers.
Acorn Computers can accept no liability whatsoever for any loss, indirect or
consequential damages, even if Acorn has been advised of the possibility of such
damage or even if caused by service or maintenance by unauthorised personnel. This
manual is intended only to assist the reader in the use of the product, and therefore
Acorn Computers shall not be liable for any loss or damage whatsoever arising from
the use of any information or particulars in, or any error or omission in, this manual,
or any incorrect use of the product.

Econet® and The Tube® are registered trademarks of Acorn Computers Limited.

ISBN 1 85250 003

Published by:
Acorn Computers Limited, Fulbourn Road, Cherry Hinton, Cambridge CBI 4JN, UK

ARM assembler 	 iii

Contents

1. Introduction 	 1
1.1 Description of the ARM CPU 	 1
1.2 The assembler 	 3
1.3 Installing AAsm 	 4
1.4 Conventions used in this manual 	 4

2. CPU instruction set 	 6
2.1 Addressing modes 	 6

2.1.1 Relative addressing 	 6
2.1.2 Indexed addressing 	 6
2.1.3 Register addressing 	 6
2.1.4 Implied addressing 	 7
2.1.5 Immediate addressing 	 7

2.2 Types of indexing 	 7
2.2.1 Pre-indexing 	 7
2.2.2 Post-indexing 	 8
2.2.3 Write back on pre-indexed instructions 	 8

2.3 Condition testing 	 9
2.4 Branch instructions 	 10

2.4.1 Branch 	 10
2.4.2 Branch with link 	 11

2.5 The barrel shifter 	 12
2.5.1 The shift types 	 13
2.5.2 Logical shift left 	 13
2.5.3 Logical shift right 	 14
2.5.4 Arithmetic shift right 	 14
2.5.5 Rotate right 	 14
2.5.6 Rotate right with extend 	 15

2.6 Data processing 	 15
2.6.1 Instruction syntax 	 16
2.6.2 Data processing instruction summary 	 21
2.6.3 The ADR instruction 	 21

2.7 Single data transfer 	 22
2.7.1 Instruction syntax 	 22

2.8 Block data transfer 	 24
2.8.1 Instruction syntax 	 25

2.8.2 Stacking 	 27

iv 	 ARM assembler

2.8.3 Special points 	 31
2.9 Supervisor calls 	 33

2.9.1 Instruction syntax 	 33
3. The assembler 	 34

3.1 Symbols 	 35
3.2 Expressions 	 36
3.3 Numeric constants 	 37
3.4 The number equating directive * 	 38
3.5 The register equating directive RN 	 38
3.6 Assembler operators 	 39

3.6.1 The arithmetic operators 	 39
3.6.2 Boolean logical operators 	 40
3.6.3 Bitwise logical operators 	 40
3.6.4 Shift operators 	 40
3.6.5 Relational operators 	 41
3.6.6 String operators 	 41
3.6.7 Operator summary 	 43

3.7 Store-loading directives 	 44
3.7.1 Syntax differences 	 44

3.8 The ALIGN directive 	 45
3.9 ?label 	 45
3.10 Literals 	 46
3.11 Laying out areas of memory 	 46

3.11.1 Counter values 	 48
3.12 Variables 	 48

3.12.1 Global variables 	 48
3.12.2 Other useful variables 	 50

3.13 Local labels 	 50
3.14 Error handling directives 	 53
3.15 The ORG and LEADR directives 	 54
3.16 The END directive 	 54

4. Conditional assembly, 	 55
4.1 Conditional assembly 	 55
4.2 Repetitive assembly 	 57
4.3 Evaluating logical expressions 	 58
4.4 Macros 	 59

4.4.1 Local variables 	 61
4.4.2 The MEXIT directive 	 61
4.4.3 Default values 	 62
4.4.4 The macro substitution method 	 62

ARM assembler

4.4.5 Nesting macros 	 63
5. Assembling, link files, printing 	 64

5.1 The command line 	 64
5.2 Assembling a program 	 66
5.3 Linking source files 	 67
5.4 The object file 	 68
5.5 The SYMBOL command 	 68
5.6 The XREF command 	 69
5.7 The WARNING command 	 69
5.8 The QUIT command 	 69
5.9 Assembler print commands 	 69

5.9.1 WIDTH n 	 70
5.9.2 LENGTH n 	 70
5.9.3 TERSE 	 70
5.9.4 Dynamic print options 	 71
5.9.5 TTL 	 73
5.9.6 SUBTTL 	 73

6. Appendix A 	 74
6.1 ARM instruction set 	 74

7. Appendix B 	 78
7.1 AAsm and ObjAsm error messages 	 78

8. Appendix C 	 85
8.1 Example AAsm file 	 85

9. Appendix D 	 87
9.1 ObjAsm directives 	 87

9.1.1 AREA 	 87
9.1.2 IMPORT 	 88
9.1.3 EXPORT 	 88
9.1.4 ENTRY 	 88
9.1.5 KEEP 	 89
9.1.6 DCD 	 89
9.1.7 Literals 	 89
9.1.8 Branch destinations 	 89
9.1.9 ObjAsm error messages 	 90

10. Appendix E 	 91
Modes and registers 	 91
10.1 Mode 0: 	 91
10.2 Mode 1: 	 92
10.3 Mode 2: 	 92
10.4 Mode 3: 	 92

vi 	 ARM assembler

10.5 Changing modes. 	 93
11. Appendix F 	 94

Source code examples 	 94
11.1 Using the conditional instructions 	 94
11.2 Pseudo-random binary sequence generator 	 96
11.3 Multiplication by a constant 	 96
11.4 Loading a word from an unknown alignment 	 99
11.5 Sign/zero extension of a half word 	 99
11.6 Return setting condition codes 	 100

ARM assembler 	 vii

1. Introduction

This document is a reference guide to the assembler for the ACORN RISC
Machine (ARM). It is assumed that the reader is familiar with other relevant
ARM documentation:

• ARM system user guide

• ARM hardware reference manual

• ARM software reference manual

• TWIN reference manual

1.1 Description of the ARM CPU
The ARM is a 32-bit single chip microprocessor which has a reduced
instruction set architecture. There are five classes of instruction:

(1) Branches

(2) Data operations between registers

(3) Single register data transfers

(4) Multiple register data transfers

(5) Supervisor calls

The ARM has a 32-bit data bus and a 26-bit address bus. An instruction
pipeline is used to hold consecutive instructions and fetch, decode and
execute phases of instructions occur in parallel. All instructions are designed
to fit into one 32-bit word and all instructions have been made conditional.

The processor can access two types of data: bytes (8 bits) and words (32
bits). The program counter PC is 24 bits wide and counts to &FFFFFF.
However, two low-order bits (both zeros) are appended to the PC value and
a 26-bit value is put on the address bus, thus quadrupling the total count to
&3141+1+C. The memory capacity of the ARM system is 64 Mbytes, or 16
Mwords.

ARM assembler

Chapter 1

The program counter is always a multiple of four because of the two
appended zeros, and so it follows that instructions must be aligned to a
multiple of four bytes. Instructions are given in one word, and data
operations are only performed on word quantities. Load and store operations
can operate on either bytes or words and these instructions can put a full 26-
bit address, with bits 0 and 1 set as required, on to the address bus.

The ARM normally operates in a mode of operation called user mode, and
in this environment the programmer sees a bank of sixteen 32-bit registers,
RO to R15. Nine other registers exist and they are used when the ARM is in
Interrupt Mode, Fast Interrupt Mode, or Supervisor Mode. A full explanation
of the ARM interrupt capability and of its four modes of operation is given
in the ARM Software Reference Manual, but the register map and an
explanation of the ARM Modes is reproduced in Appendix E of this guide.

Of the sixteen registers 0-15, only R14 and R15 are regarded as having
specific purpose. R15 contains the Program Counter (PC), and the Processor
Status Register (PSR), and R14 is the subroutine link register, which
receives a suitably modified copy of R15 on a branch with link instruction.
Special bits in the processor's instructions allow the PC and PSR to be
treated together or separately. The PSR contains the flag bits N, Z, C and V.
These are the Negative flag, the Zero flag, the Carry flag and the oVerflow
flag respectively. The CPU software manual contains information on the
PSR and flags.

2 	 ARM assembler

Introduction

1.2 The assembler
The assembler has the following features:

• Full support of the ARM instruction set

• Global and local label capability

• Powerful macro capability

• Comprehensive expression handling

• Conditional assembly

• Repetitive assembly

• Comprehensive symbol table printouts

• Link-file capability

• Pseudo-opcodes to control printout

The ARM assembler AAsm produces object files which can be immediately
executed using the *objectfilename command.

A variant of AAsm, ObjAsm, creates files which can be used by the ARM
linker. The purpose of the linker is to take programs which have been
written in several portions, resolve all unknown references, and create a
single image which can be run. The program parts may be written in a
mixture of assembler and compiled languages, and the linker deals with the
separate results of all compilations and performs any necessary cross-
referencing. ObjAsm object files cannot be executed directly: they must be
handled by the linker. Details of ObjAsm are given in appendix D of this
guide.

ARM assembler 	 3

Chapter 1

1.3 Installing AAsm
AAsm is supplied on a 5.25 inch floppy disc in Acorn ADFS format. It can
be loaded either directly from the ARM A* prompt by typing aasm or run
as a task under the TWIN editor.

1.4 Conventions used in this manual
AAsm has its own interpretations of the punctuation symbols and special
symbols which are available from the keyboard. These are:

! " # $ % & A @
()) 1 : . , ;

+ — / * = < > ? _

This often makes it difficult for the user to determine precisely which
characters on the printed page are explanatory or descriptive, and which (if
any) are the ones which AAsm will accept as having the correct syntax. A
typewriter-style typeface has been used to indicate both text which appears
on the screen and text which can be typed on the keyboard (for example,
AAsm source code). This is so that the position of relevant spaces is clearly
indicated.

The syntax of AAsm instructions is shown in meta-language form, using an
italic typeface for variable items (for example, filename, register) and a non-
italic typeface for fixed items (for example, ALIGN, RRX). Both general and
specific examples of syntax and screen output is given — there are occasions
where the full syntax of an instruction and its accompanying screen
appearance would obscure the specific points being made. It follows
therefore that not all the examples given in the text can be used directly
since they are incomplete.

4 	 ARM assembler

Introduction

Curly brackets {) enclose optional items in the syntax. For example, AAsm
accepts a three field source line which may be expressed in the form:

(label) (instruction)(; comment)

Note that there is a compulsory space between the first two fields.
A specific example of the three fields taken from an assembly listing is:

L321 ADD Ra,Ra,Ra,LSL #1 ;multiply by 3

The (label) is L321 , the (instruction) portion is ADD Ra, Ra, Ra, LSL #1
and the (;comment) is ; multiply by 3 . (Chapter 2 explains the ARM
instruction set and there the instruction field is explained in more detail.)

In actual program examples, curly brackets have a special meaning and do
not indicate an optional item.

Function keys (such as f1) and control keys (such as tab) often need to be
pressed by themselves or in combination with the shift and ctrl keys. To
indicate this, these keys are printed in boxes. This maintains consistency
with the TWIN reference manual. For example:

Press the RETURN key (RETURN)

Press the ESCAPE key (ESCAPE)

Press the DELETE key (DELETE)

Press the COPY key (COPV)

ARM assembler 	 S

2. CPU instruction set

2.1 Addressing modes
ARM instructions operate on data stored in 32-bit registers and external
memory. Addressing refers to the method whereby the address of this data is
generated in each instruction. The ARM has three memory addressing
modes: program-relative, base-relative (indexed addressing) and implied.
However, other modes can be synthesised and there is little difference in
speed between the various modes.

2.1.1 Relative addressing
Relative addressing uses a group of bytes within the instruction to specify a
displacement from the address of the current instruction to which a program
branch is to occur. The programmer supplies the target address, from which
a 24-bit displacement value is calculated by the assembler. The offset values
permitted are sufficient to allow the entire memory map to be addressed. For
example:

B LABEL

2.1.2 Indexed addressing
This mode of addressing uses a displacement or index which is added to a
base register to form a pointer into memory. Any ARM register can be
designated as the base register and, being a 32-bit register, can point to any
address in the memory map. For example:
LDR RO,[R8,#12]

The index can be an immediate value, 12 bits in length, or the contents of a
32-bit register (which has possibly passed through the barrel shifter). All bits
are taken as the index, with a completely separate bit determining whether
the index is added to or subtracted from the value in the base register.

2.1.3 Register addressing
Register to register operations are involved in this type of addressing, with
the source and destination registers being specified by bit patterns within the
instruction. For example:
ADD RO,RO,R1

6 	 ARM assembler

CPU instruction set

2.1.4 Implied addressing
This is a special case where the instruction automatically generates an
address and branches to it. For example:
SWI 1

2.1.5 Immediate addressing
In this type of addressing, the actual operand is contained in the same word
as the instruction. The operand is an 8-bit quantity rotated right by an even
amount. For example:

MOV R0,#8

Examples of other valid immediate constants are:

it&FF
#&3FC 	;This is &FF rotated right by 30
#&80000000 ;This is 2 rotated right by 2
#&FC000003 ;This is &FF rotated right by 6

Examples of invalid constants are #& 101 , which cannot be obtained by
rotating an 8-bit value, and #&1FE , which is an 8-bit value rotated by an
odd amount but not an 8-bit value rotated by an even amount.

Further details of the operation of the barrel shifter are given in section 2.5.

2.2 Types of indexing

2.2.1 Pre-indexing
In a pre-indexed addressing instruction, the CPU modifies the base address
by the index before the function of the instruction is performed. The AAsm
syntax for this is [Rn, offset] and the calculation within the square brackets
is performed first to establish the target address, the offset being either
added to or subtracted from the value held in register Rn.

ARM assembler 	 7

Chapter 2

2.2.2 Post-indexing
This is a variant of indexed addressing in which the value held in Rn is
used as the target address and Rn is modified by the index after the function
of the instruction is performed. In this case the syntax is [,offset and
the operation is known as post-indexing. It follows that for post-indexing to
have any value whatsoever, the value generated by (Rn) ,offset must be
written back into Rn so that it is available for the following instruction,
which may well be another post-indexed instruction. Post-indexing therefore
has automatic write back. If the base address is to be preserved, it must be
deliberately saved.

2.2.3 Write back on pre -indexed instructions
Write back does not occur implicitly in pre-indexed instructions, but it can
be requested by adding an exclamation mark (!) to the assembler syntax.
The base address is, of course, lost when the value in Rn is modified in this
manner. For example: STR R1, (R0,14) !

Pre-indexing and post-indexing work in conjunction with write back to form
the basis of a set of powerful multiple move and stacking operations. These
are explained later.

8 	 ARM assembler

CPU instruction set

2.3 Condition testing
Every instruction in the ARM repertoire is conditional. The default condition
is 'always' but any other condition can be requested by adding the
appropriate two character condition mnemonic to the standard form. Because
branches which are taken cause breaks in the pipeline they often waste time
needlessly, when a suitable conditional instruction sequence would be better.

As an example, the coding of IF A=4 THEN B:=A ELSE C:=D+E might be
conventionally achieved using five ARM instructions:

CMP R5,#4 	;test "A=4"
BNE LABEL 	;if not equal goto LABEL
MOV R6,R5 	;do "B: =A"
B LAB2 	;jump around the ELSE clause

LABEL 	ADD R0,R1,R2 	;do "C:=D+E"

LAB2 	 ;finish

whereas, using the condition testing instructions, the same effect
may be achieved using three instructions:

CMP 	R5,44 	;test "A=4"
MOVEQ R6,R5 	;if so do "B:=A"
ADDNE R0,R1,R2 ;else do "C: =D+E"

If the condition tested is true, the ARM instruction is performed. If it is
false, the instruction is skipped and the PC is advanced to the next memory
word; this takes one 'S-cycle' of processor time — the first example takes at
least twice as long as the second example. (An explanation of S-cycles and
other ARM timing details can be found in the ARM Hardware Reference
Manual.)

The ARM has the ability to test for 16 conditions. These are grouped in
pairs of opposites.

ARM assembler 	 9

Chapter 2

Mnemonic Condition 	 Condition of flag(s)

EQ 	EQual 	 Z set
NE 	Not Equal 	 Z clear
CS 	Carry Set / unsigned higher or same 	 C set
CC 	Carry Clear / unsigned lower than 	 C clear
NI 	negative (Minus) 	 N set
PL 	positive (PLus) 	 N clear
VS 	oVerflow Set 	 V set
vc 	oVerflow Clear 	 V clear
NI 	Higher unsigned 	 C set and Z clear
LS 	Lower or Same unsigned 	 C clear or Z set
GE 	Greater or Equal 	 (N set and V set) or (N clear and V clear)
LT 	Less Than 	 (N set and V clear) or (N clear and V set)
GT 	Greater Than 	((N set and V set) or (N clear and V clear)) and Z clear
LE 	Less or Equal 	(N set and V clear) or (N clear and V set) or Z set
AL 	ALways 	 any
NV 	NeVer 	 none

Note: the assembler implements Hs (Higher or Same) and LO (LOwer than)
as synonymous with cs and cc respectively, giving a total of 18
mnemonics.

After the instruction is obeyed, the ALU will output appropriate signals on
the flag lines. On certain instructions the flags set the condition code bits in
the PSR; for other instructions the flags in the PSR are only altered if the
programmer permits them to be updated.

2.4 Branch instructions
The Branch instruction takes a 26-bit word offset, allowing forward jumps
of up to +&2000004 and backward jumps of up to —&1FFFFF8 to be made.
This is sufficient to address the entire memory map, as the calculation
`wraps round' between the top and bottom of memory. The programmer
should provide a label from which the assembler will calculate a 26-bit
offset.

2.4.1 Branch
The instruction syntax is: B{condition} programrelativeexpression

For example: B LABEL ;branch to LABEL

BNE LABEL1 ;if not equal goto LABEL1

10 	 ARM assembler

CPU instruction set

Note that in the absence of the condition mnemonic, a branch always is
performed.

The branch offset must take account of the prefetch operation, which causes
the PC to be two words ahead of the current instruction. The ARM
assembler handles this automatically. For example, the calculated jump offset
in the following piece of code is 000000 even though the jump is to a label
two PC locations ahead.

code generated Label Mnemonic Destination

EA000000 	L1 	BEQ 	L2
xxxxxxxx 	 xxx
xxxxxxxx 	L2 	xxx

2.4.2 Branch with link
The instruction syntax is: BL(condition} programrelativeexpression

Whenever branch with link is specified, 4 is subtracted from the contents of
R15 (including the PSR) and the result is written to R14. Thus the value
written into the link register is the address of the instruction following the
branch and link instruction. Therefore after branching to a subroutine, the
program flow can return to the memory address immediately following the
branch instruction by writing back the R14 value into R15. Subroutines can
be called by a BL instruction. The subroutine should end with a MOV
PC, R14 if the link register has not been saved on a stack or Loma
Rn, (PC) if the link register has been saved on a stack addressed by Rn.

These methods of returning do not restore the original PSR. If the PSR does
need to be restored, MOV PC, R14 can be replaced by MOVS PC, R14, or
LDMxx Rn, (PC) by LDMxx Rn, RC) A . However, care should be taken when
using these methods in modes other than ttser mode, as they will also restore
the mode and the interrupt bits. The last in particular may interfere
unintentionally with the interrupt system.

ARM assembler 	 11

Chapter 2

2.5 The barrel shifter
The ALU has a 32-bit barrel shifter capable of various shift and rotate
operations. Data involved in the data processing group of instructions
(detailed in section 2.6) may pass through the barrel shifter, either as a
direct consequence of the programmer's actions, or in other cases, as a result
of the internal computations of the assembler. The barrel shifter also affects
the index for the single data transfer instructions (detailed in section 2.7).
Because of the importance played by the barrel shifter, its operations are
described prior to the formal introduction of the opcodes that use it.

The shift mechanism can produce the following types of operand:

(1) An unshifted register.

Syntax: register
For example: 	R0

(2) A register shifted by a constant amount, in the range 0-31, 1-31 or
1-32 (depending on shift type).

Syntax: register, shift-type #amount
For example: 	R0 , LSR #1

(3) A value which is the result of rotaing a register and the carry bit one
bit right. Because the carry is included in the shift, 33 bits (rather than
32 bits) are affected. The shift type is always rotate right.

Syntax: register, RRX
For example: 	R0 , RRX

(4) A register shifted by n bits, where n is the least significant byte of a
register.

Syntax: register, shift-type register
For example: 	R1, LSL R2

(5) A constant constructed by rotating an 8-bit constant right by n*2 bits,
where n is supplied as a 4-bit constant. The shift type is always rotate
right.

Syntax: I expression
For example: 	4t& 3FC

Note: the shift is invisible to the programmer, who should merely
supply an immediate value for the data processing instruction to use.

12 	 ARM assembler

CPU instruction set

The assembler will evaluate the expression and reject any number
which cannot be expressed as a rotation by an even number in the
range 0-255. If the requested constant is in this range, the assembler
always constructs it as an unrotated value, even if there are other
possibilities.

(6) A constant constructed as in (5), but specified explicitly.

Syntax: #constant, shift amount
For example: 	#4,2

The shift amount should be an even number in the range 0-30. This
can be important for setting the carry flag on an operation which
would otherwise not update it. For example:

MOVS R0, #4,2

produces the same result as

MOVS R0, #1

but because the first instruction does a rotate right of two bits the carry
flag is cleared, whereas it is not altered by the second instruction.

Note that only forms (1), (2) and (3) are valid for index values in single
register transfers.

2.5.1 The shift types
1st. Logical Shift Left
LSR Logical Shift Right
ASR Arithmetic Shift Right
ROR Rotate Right

The mnemonic ASL may be freely interchanged with LSL.

2.5.2 Logical shift left

C <- - bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb <- - 0

Rm,LSL #n shift contents of Rm left by n which may be 0 to 31 bits.
Rm,LSL Rs shift contents of Rm left by the least significant byte of Rs.

If the shift amount is zero, no shift is performed and the carry flag is not
altered. If the shift amount lies in the range 1 to 32, the carry flag is set to
b(32—n). If the shift amount is greater than 32, the carry flag is set to zero.

ARM assembler 	 13

Chapter 2

2.5.3 Logical shift right

0 - -> bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb - -> C

Rm, LSR #n Shift contents of Rm right by n which may be 1 to 32 bits.
Rm, LSR Rs Shift contents of Rm right by the least significant byte of Rs .

If the shift amount is zero, no shift is performed and the carry flag is not
altered. If the shift amount lies in the range 1 to 32, the carry flag is set to
b(n-1). If the shift amount is greater than 32, the carry flag is set to zero.

2.5.4 Arithmetic shift right

- - -> xbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb - -> C

<- - -

Rm, ASR #n Shift contents of Rm right by n which may be 1 to 32 bits.
Rm, ASR Rs Shift contents of Rm right by the least significant byte of Rs .

The n most significant bits become equal to b31 (that is, on every single
shift,bit 31 is duplicated).

If the shift amount is zero, no shift is performed and the carry flag is not
altered. If the shift amount lies in the range 1 to 32, the carry flag is set to
b(n-1). If the shift amount is greater than 32, the carry flag is set to b31.

2.5.5 Rotate right

- -> bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb - - ->C

Rm, ROR #n Rotate contents of Rm right by n which may be 1 to 31 bits.
Rm, ROR Rs Rotate contents of Rm right by the least significant byte of

Rs .

If the LSB of Rs evaluates to zero, then no shift is performed and the carry
bit is not altered. Otherwise the carry is set to the last bit rotated into b31.

14 	 ARM assembler

CPU instruction set

2.5.6 Rotate right with extend
< 	 <

1 	 i
- -> bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb - - ->C

Rm,RRx 	Rotate right the contents of Rm and the carry flag by 1 bit
only.

2.6 Data processing
There are sixteen data processing instructions.

ADC 	ADd with Carry
ADD 	ADD
AND 	 bitwise AND
BIC 	BIt Clear
CMN 	CoMpare Negated
CMP 	CoMPare
EOR 	bitwise Exclusive OR
mov 	MOVe
MVN 	MoVe Not
ORR 	bitwise OR
RSB 	Reverse SuBtract
RSC 	Reverse Subtract with Carry
SBC 	SuBtract with Carry
SUB 	SUBtract
TEQ 	Test EQuivalence
TST 	TeST and mask

Except in the cases of MOV and MVN, the operation is performed between a
source register Rn and an operand. In the cases of MOV and MVN, only an
operand is needed. The source register can be any one of the 16 registers,
and the operand can be any operand that the barrel shifter can produce (see
section 2.5 for details). Note that any shifting is done before the operation is
performed. Some instructions use the bit held in the ALU's carry flag and
add it into the operation. The result of the operation is placed in the
destination register, which may be any one of the 16 registers.

	

ARM assembler 	 15

Chapter 2

The result of the operation affects the N and Z flags, and may also affect the
C and V flags. However, the ALU doesn't copy the contents of its flags to
the relevant parts of the Processor Status Register (PSR) unless the S bit is
set. In the case of the four instructions CMN, CMP, TEQ and TST the
assembler always sets the S bit since these instructions would be
meaningless if their results were not copied to the PSR. In the case of the
remaining 12 instructions, the programmer may request that the ALU flags
are copied to the PSR, by including the letter s in the source line. This
forces the PSR update.

For example: ADDS R2,R0,R1

;Add the contents of R1 to the contents of R0 and
;put the result in R2. Modify flags N, Z, C and V.

2.6.1 Instruction syntax
The data processing instructions use three different types of syntax,
depending on which opcode is being used:

(1) MOV and MVN

opcodefronditions}{s} destination, operand

{condition} A two-character condition mnemonic. In the absence of the
condition mnemonic, AL is assumed.

{s} is optional: it sets the S bit in the instruction. If s is specified, N
and Z are set according to the value placed in the destination register,
and C is set to the last bit shifted out by the barrel shifter, or is
unchanged if no shifting took place. V is unchanged.

destination must be a register.

operand may be any of the operands that the barrel shifter can
produce. MOV

 causes the operand to be placed unchanged in the destination
register.

MVN causes the operand to be evaluated and its bitwise inverse to be
placed in the destination register.

For example: MOV R0,R1,LSL#2

16 	 ARM assembler

CPU instruction set

The contents of register 1 are shifted left by 2 bits and transferred to
register 0.

For example: MVN R2 , R3

Register 2 is set to the bitwise inverse of the contents of register 3.

(2) ADD, ADC, SUB, SBC, RSB, RSC, AND, BIC, ORR, EOR

opcode{condition}(s} destination, operand] ,operand2

{condition} A two-character condition mnemonic. In the absence of the
condition mnemonic, AL is assumed.

{s} is optional. It sets the S bit in the instruction. If s is specified,
then N and Z are set according to the value placed in the destination
register. For ADC, ADD, RSB, RSC, SBC and SUB, C and V are set
according to the result of the arithmetic operation. For AND, BIC,

EOR and ORR, V is left unchanged and C is set to the last bit shifted
out by the barrel shifter, or is unchanged if no shifting took place.

destination must be a register.

operand] must be a register.

operand2 may be any of the operands that the barrel shifter can
produce.

ADD addition is performed on operand] and operand2. The result is
stored in the destination register.

ADC addition is performed on operand] and operand2 and the carry
flag. The result is stored in the destination register. This instruction can
be used to implement multi-word additions.

SUB operand2 is subtracted from operand]. The result is stored in the
destination register.

sac if the carry flag is set, operand2 is subtracted from operand]. If
the carry flag is clear, operand1—operand2-1 is calculated. The result
is stored in the destination register. This instruction can be used to
implement multi-word subtractions.

ARM assembler 	 17

Chapter 2

For example:

SUBS R4,R2,R0 ;Do least significant word
;of subtraction

SBC R5,R3,R1 ;Do most significant word,
;taking account of the borrow

;This does the 64 bit subtraction
;(R5,R4)=(R3,R2)-(R1,R0)

The result is stored in the destination register.

RSB operand] is subtracted from operand2. The result is stored in the
destination register.

RSC if the carry flag is set, operandi is subtracted from operand2. If
the carry flag is clear, operand2-operand1-1 is calculated. The result
is stored in the destination register.

AND a bitwise AND is performed on operand] and operand2. The
result is stored in the destination register.

sic bitwise inversion is performed on operand2, then a bitwise AND
is performed on operand] and the result of the inversion. The result is
stored in the destination register.

ORR a bitwise OR is performed on operand] and operand2. The result
is stored in the destination register.

FOR a bitwise Exclusive OR is performed on operand] and operand2.
The result is stored in the destination register. For example:

ADD R0,R1,R2 ;R0=R1+R2
ADDS R0,R1,#1 ;R0=R1+1 and set N,Z,C,V

18 	 ARM assembler

CPU instruction set

(3) CMN, CMP, TEQ, TST

opcode{condition}{P} operand] ,operand2

[condition} a two-character condition mnemonic. In the absence of the
condition mnemonic, AL is assumed.

operand] is a register.

operand2 may be a register or an expression.

There is no need to specify s because for these instructions the
assembler will ensure the necessary flags are set. s may be specified
in the syntax and it will be accepted provided that P has not also been
specified. For example, CMPSP and CMPPS will not be accepted.

CMP operand2 is subtracted from operand]. Flags N, Z, C and V are
altered.

CMN operand2 is added to operand]. This compare allows a negative
data field to be created for a compare. Flags N, Z, C and V are
altered.

TEQ a bitwise exclusive OR is performed between operand] and
operand2.

TST a bitwise AND operation is performed between operand] and
operand2.

In the case of TEQ and TST the N and V flags are altered according
to the result, V is unchanged and C is set to the last bit shifted out by
the barrel shifter, or is unchanged if no shifting took place. For
example:

CMP R0,R1 ;Compare the contents of R0 with R1
CMP R0,11&80 ;Compare the contents of R0 with &80

{P.} there are special forms for CMN, CMP, TEQ and TST in which the
result of the operation is moved to the PSR even though the
instruction has no destination register. In user mode, the N, Z, C and
V flags are set from the top four bits of the result. In other modes, the
N, Z, C, V, I and F flags are set from the top six bits of the result and
the mode bits from its bottom two bits.

ARM assembler 	 19

Chapter 2

Invoking this special form is done by adding P to the instruction. One
reason for wanting to modify R15 in this way would be to change
modes. For example:

TEQP R15,#0 ;change to user mode .

Note the treatment of R15 as the first operand, described in note (2)
below.

Note: the CPU takes certain actions whenever the destination or any operand
is R15. These are as follows:-

(1) If R15 is the destination register: 24 bits move to R15 if the S bit is
not set. These bits become the new program counter (PC). In user
mode, 28 bits are moved to R15 if the S bit is set; these are the 24 PC
bits and the N, Z, C and V flags. In other modes all 32 bits are moved
to R15 if the S bit is set.

(2) If R15 is the first operand in a two operand instruction: R15 is
presented to the arithmetic logic unit (ALU) with the PSR bits set to
zero.

(3) If the second or only operand is R15 (possibly shifted): R15 is
presented to the barrel shifter or ALU with the PSR bits unchanged.

(4) R15 is the rotation register: R15 is presented to the barrel shifter with
the PSR bits set to zero.

In the case of an instruction such as MOV R0, #VALUE, the assembler will
evaluate the expression, and produce a CPU instruction to load the value
into the destination register. This may not in fact be the machine level
instruction known as MOV, but the programmer need not be aware that an
alternative instruction has been substituted. An example is MOV Rn, #-1
which the CPU cannot handle directly. The assembler will accept this
syntax, but will convert it and generate object code for Ivy Rn, #0 which
results in Rn containing —1. Such interconversion also takes place on the
BIC/AND, ADD/SUB, ADC/SBC and CMP/CMN pairs of instructions.

20 	 ARM assembler

CPU instruction set

2.6.2 Data processing instruction summary
Mnemonic Meaning 	 Operation 	 Flags Affected

ADC Add with Carry 	 Rd:= Rn+operand+C 	N,Z,C,V
ADD Add 	 Rd:= Rn+operand 	N,Z,C,V
AND And 	 Rd:= Rn AND operand 	N,Z,C
BIC Bit Clear 	 Rd:= Rn AND (NOT(operand))N,Z,C
CMN Compare Negated 	Rn+operand 	 N,Z,C,V
CMP Compare 	 Rn-operand 	 N,Z,C,V
EOR Exclusive Or 	 Rd:= Rn EOR operand 	N,Z,C
mov Move 	 Rd:= operand 	 N,Z,C
MVN Move Not 	 Rd:= NOT operand 	N,Z,C
ORR Logical Or 	 Rd:= Rn OR operand 	N,Z,C
RSB Reverse Subtract 	Rd:= operand-Rn 	 N,Z,C,V
RSC Reverse Subtract with Carry Rd:= operand-Rn-1+C 	N,Z,C,V
sac Subtract with Carry 	Rd:= Rn-operand-1+C 	N,Z,C,V
SUB Subtract 	 Rd:= Rn-operand 	 N,Z,C,V
TEQ Test Equivalence 	Rn EOR operand 	N,Z,C
TST Test AND Mask 	Rn AND operand 	N,Z,C

Note: Rd is the destination register; Rn is a source register.

2.6.3 The ADR instruction
Syntax:

ADR register, expression

Produce an address in a register. ARM does not have an explicit 'calculate
effective address' instruction, as this can generally be done using ADD, sus,
MOV or MVN. To ease the construction of such instructions, the assembler
provides an ADR instruction.

The expression may be register-relative, program-relative or numeric.

If the expression is register-relative, an ADD register, register2 , *constant or
SUB register,register2, *constant instruction will be produced, where
register2 is the register that the expression is relative to.

If the expression is program-relative, an ADD register, PC, *constant or
sus register, PC, *constant instruction will be produced.

ARM assembler 	 21

Chapter 2

If the expression is numeric, a MOV register, # constant or
MVN register, #constant will be produced.

In all three cases, an error will be generated if the required immediate
constant is out of range.

If the program has a fixed origin (that is if the ORG directive has been
used), then the distinction between program-relative and numeric values
disappears. In this case, the assembler will first try to treat such a value as
program-relative. If this fails, it will try to treat it as numeric. An error will
only be generated if both attempts fail.

2.7 Single data transfer
This group of instructions is used for moving data between registers and
memory. LDR (LoaD Register) loads a register from a memory location,
while STR (STore Register) stores a register to a memory location. Both
instructions may use pre-indexed or post-indexed addressing; in the case of
pre-indexed addressing write back may be used. The amount of data
transferred may be either a word or a byte. Special versions of the post-
indexed instructions also exist which cause the TRANS pin of the ARM to
be active throughout the data transfer; these are useful for loading or storing
user data areas from the supervisor state in a memory-managed system.

For register to register transfers see the data processing section, and the MOV
instruction in particular.

2.7.1 Instruction syntax

Pre-indexed instruction (possibly with write back)

opcode{cond}{B} register, [base{ , index}]

Post-indexed instruction

opcoddcond}{B}{T} register, [base] {,index}

opcode may be LDR or STR, and must not be omitted.

{cond} may be any of the two-character condition mnemonics listed in
section 2.3. If omitted, AL is assumed.

22 	 ARM assembler

CPU instruction set

{3} if present the transfer will be of just one byte. If omitted, a full word is
transferred. Note that transfers of words to or from non-word-aligned
addresses have non-obvious results. Note that a byte load will clear bits
8-31 of the destination register.

{T} if present the TRANS pin will be active. Note that T is invalid for pre-
indexed addressing.

{index} is the index to be added to or subtracted from the base register. If
omitted, #0 is assumed. If used, it may have two forms:

(a) #(immediate value} the immediate value must lie in the range
—4095 to 4095.

(b) {){index register}{,shift} the shift may be omitted, in which case
no shifting is assumed. The allowed shift types are those listed under
(1), (2) and (3) in section 2.5. Register controlled shifts are not
allowed. The minus, if specified, means that the index value is to be
subtracted.

An alternate form of the syntax where an expression provides the offset is:

opcode{cond}{B} regisler,expression{!}

The expression may be a program address (program-relative expression) or a
register-relative expression. The assembler will attempt to generate an
instruction using the appropriate register as a base and an immediate offset
to address the location given by evaluating the expression. The offset value
must lie in the range —4095 to 4095. If out of range, an error will be
generated.

{!} if present, write back will be done. register will assume the value of
register+index, or register-index, as appropriate.

ARM assembler 	 23

Chapter 2

If the contents of register are not destroyed by other instructions, the
continued use of LDR (or STR) with write back will continually move the
base register register through memory in steps given by the index value.
Note that 1' is invalid for post-indexed addressing, as write back is
automatic in this case. For example:

STR R1,PLACE ;generate program-relative offset to

;address PLACE

STR R1,(BASE,INDEX]! ;store R1 at BASE+INDEX (both

; register contents) and write

; back address to BASE

STR R1,[BASE],INDEX ;store R1 at BASE and write back

;BASE+INDEX to BASE

LDR R1,[BASE,#17] 	;load R1 from contents of
;BASE+17

;Don't write back

LDR R1,(BASE,INDEX,LSL #2] ;load R1 from contents of

;BASE+INDEX*4

2.8 Block data transfer
This group of instructions is used for moving data between a number of
registers and memory. LDM (LoaD Multiple registers) loads one or more
registers from a block of memory, while STM (STore Multiple registers)
stores one or more registers to a block of memory. The action of storing or
loading may be preceded or followed by incrementing or decrementing the
memory address. Write back may also be specified.

24 	 ARM assembler

CPU instruction set

2.8.1 Instruction syntax
opcode{cond}type base{!}, (list)["}

opcode may be STM or LDM.

{cond} may be any of the two-character conditional mnemonics listed in
section 2.3. If omitted, AL is assumed.

type is a two-character mnemonic indicating one of eight instruction types. It
may not be omitted. The types are FD, ED, FA, EA, IA, IB, DA and
DB and their description differs depending on whether they are appended to
STM or LDM:

STMDB 	 Decrement Before the store
STMDA 	 Decrement After the store
STMIB 	 Increment Before the store
STMIA 	 Increment After the store
LDMDB 	 Decrement Before the load
LDMDA 	 Decrement After the load
LDMIB 	 Increment Before the load
LDMIA 	 Increment After the load
STMFD 	 Push registers to a Full stack, Descending

(Pre-Decrement)
STMED 	 Push registers to an Empty stack, Descending

(Post-Decrement)
STMFA 	 Push registers to a Full stack, Ascending

(Pre-Increment)
STMEA

	

	 Push registers to an Empty stack, Ascending
(Post-Increment)

LDMFD

	

	 Pop registers from a Full stack, Descending
(Post-Increment)

LDMED

	

	 Pop registers from an Empty stack, Descending
(Pre-Increment)

LDMFA

	

	 Pop registers from a Full stack, Ascending
(Post-Decrement).

LDMEA

	

	 Pop registers from an Empty stack, Ascending
(Pre-Decrement)

ARM assembler 	 25

Chapter 2

A full stack is one in which the stack pointer points to the last data item
written to it. An empty stack is one in which the stack pointer points to the
first free slot in it. A descending stack is one which grows from high
memory addresses to low ones. An ascending stack is one which grows from
low memory addresses to high ones.

base, which may be any register, is the base register. It must be specified.

0} the optional 1' will force base to assume the value of base +4*(number
of registers), or base -4*(number of registers), as appropriate.

list is a list of registers separated by commas, or a register range indicated
by a hyphen, or a combination of both. For example:
R1,R2,PC
R1-R10
R1 -R9,R12,PC

{^} is optional. It has different effects for STM and LDM.

For STM: it causes the user mode registers to be transferred, whatever the
current mode.

For LDM: if R15 is in the list of registers, only the 24 PC bits are normally
loaded. Coding ^ causes the N, Z, C and V flags to be loaded as well as the
PC in user mode, or all 32 bits to be loaded in other modes. Thus, return
from interrupt or return from SWI using LDM will normally have the ^
coded. For example:

STMIA Rn,{R0,R1,R2,R3}

which may also be written:

STMIA Rn,{R0 -R3}

LDMIA Rn,{R0,R1,R2,R3}

which may also be written:

LDMIA Rn,{R0 -R3}

26 	 ARM assembler

CPU instruction set

Provided that the contents of Rn and of the stack have not been corrupted
by another instruction, the LDMIA instruction will reverse the effect of the
STMIA instruction and recover the contents of the four registers from
memory.

1' may be used to update the pointer Rn, so that it remains pointing to the
memory location after the last increment. For example:

STMIA Rn ! , (R0, RI, R2, R3)

To recover the register contents would now require:

LDMDB Rn ! , {R0, RI , R2 , R3 }

2.8.2 Stacking
Push to stack

Various forms of STM and LDM may be used to save the ARM registers on
a stack. The opcodes generated for the various styles of stacking and
unstackings are no different from those of the STMDB/DA/IB/IA and
LDMDB/DA/IB/ IA instructions, but the syntax is different.

There are four types of instruction which push register values on to a stack.
They are:

STMFD 	 Full stack, Descending
STMED 	 Empty stack, Descending
STMFA 	 Full stack, Ascending
STMEA 	 Empty stack, Ascending

Write back is almost always required in stacking applications, but it must be
coded explicitly.

Worked examples of STMEA and STMFD will now be given.

(1) STMEA

For example:
STMEA Rn ! , {R6, R3 , R7 , R8 }

which may also be written:

STMEA Rn ! , {R6-R8 , R3 }

ARM assembler 	 27

Chapter 2

Prior to the instruction, it is assumed that a stack holding three values
already exists, and that Rn is ready to push more values on to it:

Rn->I 	|<-which is empty

I V3 	1

V2 1

V1 1 stack base

- - -

The stack is ascending, and the location currently pointed to is deemed
VD be empty. Then, after STMEA Rn!,{R6,R3,R7,R8} the stack
grows.

I 	1<-Rn
I R8

I R7

R6

I R3

I V3

I V2

V1 I stack base

28 	 ARM assembler

CPU instruction set

Notice that register values are stacked in register order. This is always
the case and cannot be altered. The lowest-numbered register always
occupies the lowest memory location and registers are placed on, or
removed from, the stack starting with the lowest-numbered register.
This can be seen in the next example, which shows the order of
stacking following two 'full stack descending' instructions.

(2) STMFD

For example:
STMFD Rn!, (R6,R3,R7,R8)

STMFD Rn!,{R0-R4}

1<- Rn before 1st instruction

R8

I R7

R6
R3 <- Rn after 1st instruction

I R4

I R3

R2

R1
R0 1<- Rn after 2nd instruction

ARM assembler 	 29

Chapter 2

Pop from stack

There are four types of instruction which pop register values from a stack.
They are:

LDMEA 	 Empty stack, Ascending
LDMFA 	 Full stack, Ascending
LDMED 	 Empty stack, Descending
LDMFD 	 Full stack, Descending

Worked examples of LDMEA and LDMFD will now be given.

(1) LDMEA
To pop all values from the following stack (set up by the
STMEA Rn, {R6 -R8,R3} example), use:

LDMEA Rn!,{R1 -R7}

I<-Rn

	

I V7 	I

	

V6 	f

	

I V5 	I

V4

	

I V3 	I

	

I V2 	I

VI I stack base

- - -

The following transfer would take place:

Vi -> RI

V2 -> R2

V3 -> R3

V4 -> R4

V5 -> R5

V6 -> R6

V7 -> R7

Rn = stack base

30 	 ARM assembler

CPU instruction set

(2) LDMFD

To recover one set of the saved registers from the following stack (set
up by the previous STMFD Rn ! , (R0-R4) example), use:

LDMFD Rn ! , {R0-R4 1

I
- - -

	

R8 	I

	

I R7 	I

	

I R6 	I

R3 I <- Lx

	

I R4 	I

	

I R3 	I

	

R2 	I

	

R1 	I

I R0 I<- Rn

After the pop operation, Rn will point to location Lx.

2.8.3 Special points
(1) When the base register is in the list of registers.

The base register may be pushed on to the stack and if write back is
not in operation, no problem will occur.

If write back is in operation, the STM is performed in the following
order:

write lowest-numbered register to memory.
perform the write back.
write other registers to memory in ascending order.

Thus, if the base register is the lowest-numbered register in the list, its
original value is stored. Otherwise, its written back value is stored.

If the base register is popped from the stack, the pop operation will
continue successfully: the entire block transfer runs on an internal copy
of the base, and will not be aware that the base register has been
loaded with a new value.

ARM assembler 	 31

Chapter 2

(2) When R15, the PC register, is in the list of registers.

When R15 is pushed on to the stack, the PSR is saved as well.

When R15 is popped from the stack, the. PSR is only included if the
symbol A is coded following the register list. The part of the PSR
included will in any case only be that which may be modified in the
currently selected ARM mode. For example:

LDMFD SP!,(FP,PC}^

(3) When the base register is R15.

When the PC is used as the base register, the PSR bits form part of
the 32-bit address. Unless all flags are zero and the interrupts enabled,
an address greater than &3FFFFFF will be formed. This is an address
exception, and will cause the address exception trap in the ARM to be
entered.

Write back is switched off when the PC is the base register.

(4) The register list is always effectively sorted into ascending order. This
means that instruction sequences such as:
STMIA R0,{R1,R2}
LDMIA R0,(R2,R1}

do not swap the contents of RI and R2.

(5) In order to force the saving of the user mode registers when executing
in a different mode, ^ should be coded following the register list. For
example:
STMFD R0,{120 -R15}^

(6) The operation of placing or removing registers to or from the stack
starting with the lowest-numbered register is independent of stack type
and exists to ensure that if a data abort occurs during the instruction,
the PC is preserved.

32 	 ARM assembler

CPU instruction set

2.9 Supervisor calls
These instructions are used extensively in the ARM Development System to
communicate with I/O devices.

2.9.1 Instruction syntax
The syntax is: SWI expression

The CPU will save the contents of R15 less 4 in R14 of the SVC register
set, then set the PSR register to SVC mode and set flag I. The PC will then
be loaded with the value 8 causing a jump to that address to be made.

expression the CPU will ignore the expression, but it may be decoded by
other system software and used to determine what action is to be taken. The
expression may have up to 24 bits (that is take values 0—&1.1-1-1-t1-). For
example:

SWI 	41
= 	"Hello world",10,13,0
ALIGN
	code 	
	continues...

In the development system, this will send the message "Hello world" to the
output terminal.

The significance of the assembler directive ALIGN is explained in chapter 3.

ARM assembler 	 33

3. The assembler

Whenever the ARM assembler is required to generate opcodcs representing
program instructions, the general style of a three field line is used.

{label} {instruction}{ ; comment}

The label and instruction fields are separated by one or more spaces; if the
line starts with a space, label is absent.

{label} is optional; if present, it defines a symbol which is set equal to the
address of the instruction assembled. If label is absent, then the address used
is the current value of the instruction location pointer. This may not be
word-aligned, for example, when the last directive was one of the store-
loading directives detailed in section 3.7. However, using a label with an
opcode instruction ensures that the address generated is word-aligned.

{instruction} is optional; if present, it defines the instruction to be
assembled. See chapter 2 for the syntax of instructions.

; comment}, if present, is started by the first semi-colon on the line
(ignoring semi-colons inside string constants). The semi-colon and the rest of
the line are ignored by the assembler.

Two special cases of this syntax, both of which are ignored by the
assembler, are worth noting:

(I) A completely blank line is valid, and may be used to make the text
more readable.

(2) A line may start with a semi-colon, the entire line being comment.

AAsm will treat a tab character (09) in a source file as a space (20), and
will accept both line feeds (OA) and carriage returns (OD) as line
terminators. The combinations 0A0D and 0D0A are treated as a single line
terminator.

34 	 ARM assembler

The assembler

3.1 Symbols
A symbol is a group of alphanumeric characters which represents a number,
logical value or string value. A label is a special type of symbol: the number
it represents is not always immediately known to either the programmer or
the assembler, but is generated as the assembly takes place. Other symbols
are assigned values immediately by assembler directives.

The assembler recognises a label by its position on the line. The first
character of the label occupies the first column of the line.

All symbols must start with a letter, A-Z or a-z; lower-case letters may be
used and will be treated as different from their upper-case counterparts.
Numeric characters and the underscore character may be embedded in
the symbol. Symbols may also be the same as mnemonics: this is not
recommended, as it is likely to be confusing to the programmer, but the
assembler will distinguish between a symbol and a mnemonic by their
relative positions on the program line. Symbols can be any length (but the
line length may not be more than 255 characters) and all characters are
significant.

A special syntax using enclosing I bars allows any character to be placed in
a symbol. This allows the use of labels which are compatible with the
output of compilers, which may use other characters within their symbols.
The enclosing bars are not seen as part of the symbol. For example:

I Interpret .P$Interpret$1 is one such symbol or label.

ARM assembler 	 35

Chapter 3

3.2 Expressions
Expressions are combinations of simple values, unary and binary operators,
and brackets. The order of evaluation of expressions is determined firstly by
bracketing, secondly by precedence rules, and in the absence of either, is
from left to right. Specifically, any bracketed sub-expression will always be
evaluated before being used as an operand to an operator, and any operand
with a binary operator on both sides will always be used as an operand to
the higher precedence operator, or if they have equal precedence, to the left
hand operator.

Every simple value has a type associated with it, as does every operand
produced at any stage of the expression evaluation, including the expression
result. The types of operand are: numeric values, string values, logical
values, program-relative values and register-relative values. For an
expression to be syntactically correct, every operator must be provided with
operands of the correct types.

Numeric values are unsigned integers in the range 0 to &FFFFFFFF.
Overflow is ignored when doing calculations with numeric values (-1
evaluates to &FFFFFFFF, for instance). Comparisons are always unsigned
comparisons, which may have counter-intuitive results in some cases (for
example, —1>1 evaluates to `true'). In a few places this manual contains
such statements as 'The immediate value must lie in the range —4095 to
4095'. The values are presented this way for clarity, but the accurate
interpretation of this example is The immediate value must lie in the range
0 to &FFF, or &FFFFF001 to &FFFFFFFF'.

String values are strings of from 0 to 256 bytes, each of which may take
any value in the range 0 to 255; the byte values are usually ASCII printable
characters in practice. The assembler will convert a string of length 1 into a
numeric value if necessary, as described below in section 3.3.

Logical values are 'true' and 'false'; these constants can be input to the
assembler as [TRUE) and (FALSE } .

Program-relative values are simply offsets from the program origin. All
labels on instructions and stand-alone labels are therefore program-relative
values. In the case where the program has a fixed origin the distinction
between numeric values and program-relative values disappears.

36 	 ARM assembler

The assembler

Register-relative values are offsets from a base register, so in particular the
difference of two such values is a numeric value. Simple register-relative
values can be defined using the two operand form of the ^ directive and the
directive (see section 3.11). Internally within the evaluation of an
expression a register-relative value may acquire a base of a signed sum of
registers, but by the time the evaluation of the expression is complete this
must have collapsed to either a numeric value or an offset from a single
register. Register-relative values for which the base register is the PC are
always converted into program-relative values.

3.3 Numeric constants
The ARM assembler can accept numbers given to it in any of three forms:

123456 ; decimal constants
&A1F40 ; hexadecimal constants
n_xxxx ; number in the form base n

e.g. 2_101 is binary 101
n may be between 2 and 9

It will also evaluate a quoted ASCII character (for example, 'A') to a
number if necessary.

ARM assembler 	 37

Chapter 3

3.4 The number equating directive *
Numeric values are assigned to symbols by the * directive or, alternatively,
by the EQU directive. Program-relative values can also be assigned by * or
EQU.

Syntax:

label * numeric or program-relative-expression

For example:

LINEFEED * 	&0A 	 ;equate LINEFEED as &0A
MASK 	EQU &FF00FFF 	 ;create a mask
FRAMESIZE * 	4*((framebase+3)/4);calculate FRAMESIZE

;from framebase
LABEL 	SWI 16
LABEL2 	* LABEL-4

3.5 The register equating directive RN
The directive RN is used to assign a register number 0-15 to a symbol.

Syntax:

label 	RN numeric expression

For example:

Reg2 	RN 2
TempStore RN 3
SL 	 RN 4
sl 	 RN SL

A register name is taken to be a constant when included in an arbitrary
expression, but only register names are valid where a register is required.

38 	 ARM assembler

The assembler

All register names must be defined. Many examples in this manual assume
that PC, R0, R1, R2, and so on are valid register names. To make this
the case it is first necessary to use the RN directive at the beginning of the
source code, thus:

R0 	 RN 0
R1 	 RN 1
R2 	 RN 2

R15 	RN 15
PC 	 RN 15

3.6 Assembler operators
The ARM assembler provides an extensive set of operators for use in
expressions. The syntax of many of these resembles their counterparts in
high level languages.

Binary operators act on two operands and are placed between the operands.

For example: VALUE-2
1:SHL:EXPONENT

Unary operators act on one operand and are placed before it.

For example: -VALUE
:LNOT:FLAG

3.6.1 The arithmetic operators
add/unary + 	 binary or unary
subtract/unary - 	 binary or unary
multiply 	 binary
divide 	 binary

:MOD: 	remainder after division 	 binary

For the purposes of division and remainder all values are treated as 32-bit
unsigned integers. + and - act on numeric, program-relative and register-
relative expressions, the others act only on numeric expressions.

ARM assembler 	 39

Chapter 3

3.6.2 Boolean logical operators
:LAND: Logical AND 	 binary
:LOR: Logical OR 	 binary
:LEOR: Logical Exclusive OR 	 binary
:LNOT: Logical NOT 	 unary

These act on logical expressions.

3.6.3 Bitwise logical operators
:AND: bitwise AND 	 binary
:OR: 	bitwise OR 	 binary
:EOR: 	bitwise Exclusive OR 	 binary
:NOT: bitwise NOT 	 unary

These act on numeric expressions. The operation is done independently on
each bit of the binary expansion(s) of the operand(s) to produce the binary
expansion of the result.

3.6.4 Shift operators
:ROL: 	ROtate Left 	 binary
:ROR: 	ROtate Right 	 binary
:SHL: 	SHift Left 	 binary
:SHR: 	SHift Right 	 binary

These act on numeric expressions. The first operand is shifted or rotated by
an amount given by the second operand. The SHIM are logical rather than
arithmetic.

40 	 ARM assembler

The assembler

3.6.5 Relational operators
equal 	 binary
greater than 	 binary

>= 	greater than or equal 	binary
less than 	 binary

<= 	less than or equal 	 binary
<> 	not equal 	 binary
I- 	not equal 	 binary

These act between two operands of the same type. The allowable types are
numeric, program-relative, register-relative and string. They produce a
logical value. For details of how string comparisons are done, see section
4.3.

3.6.6 String operators
Concatenation (binary)

:cc: joins (concatenates) two strings.

expression] :CC: expression2

where expression] and expression2 are strings.
For example: "ABCD" :CC: "EFGH" gives "ABCDEFGH"

Slicing (binary)

expression] : LEFT: expression2
expression] :RIGHT: expression2

where expression] is a string and expression2 is numeric.

"sssss" :LEFT:n returns the n left-most characters from the string "sssss".
"sssss" :RIGHT:n returns the n right-most characters from the string
"sssss".

For example:
"EGBDF":LEFT:1 returns "E"

"EGBDF":RIGHT:1 returns "F"

Length (unary)

:LEN:expression returns the length of a string expression.

Conversion (unary)

:CHR:expression returns a string of length 1 having ASCII Code expression.
The expression must be numeric.

ARM assembler 	 41

Chapter 3

: STR: expression returns an eight digit hexadecimal string corresponding to
an expression , if the expression is numeric.

: STR : expression returns the string TRUE or FALSE if the expression is
logical.

42 	 ARM assembler

The assembler

3.6.7 Operator summary
The precedence or relative binding of an operator is given as a number from
1 to 7 where 7 indicates the highest binding power. Note that unary
operators are evaluated from right to left.

• 7 +A 	Unary plus
- 7 -A 	Unary negate
LNOT 7 : LNOT : A 	Logical complement of A
NOT 	7 :NOT:A 	Bitwise complement of A
LEN 	7 :LEN:A 	Length of string A
CHR 	7 :CHR:A 	ASCII string of A
STR 	7 : STR : A 	Hexadecimal string of A

• 6 A*B 	Multiply
6 A/13 	Divide

MOD 	6 A: MOD: B 	A modulo B

LEFT 5 A: LEFT :B the left most B characters of A
RIGHT 5 A:RIGHT :B the right most B characters of A
CC 	5 A:cc:8 	B concatenated on to the end of A

ROL 	4 A:ROL:8 	Rotate A left 8 bits
ROR 	4 A: ROR:B 	Rotate A right B bits
stn. 	4 A: SHL :B 	Shift A left B bits
SHR 	4 A: SHR : 8 	Shift A right B bits

• 3 A+B 	Add A and B
- 3 A-B 	Subtract B from A
AND 	3 A:AND:B 	Bitwise AND A and B
OR 	3 A:OR:B 	Bitwise OR A and B
FOR 	3 A: EOR :B 	Bitwise exclusive OR A and B

- 2 A=B 	A equal to B
• 2 A>8 	A greater than B
>= 	2 A>=B 	A greater than or equal to B
• 2 A<B 	A less than B
<= 	2 A<=B 	A less than or equal to B

2 A/=B 	A not equal to B .blank
LAND 1 A: LAND :B Logical AND
LOR 	1 A: LOR:B 	Logical OR
LEOR I A: LEOR:B Logical exclusive OR

ARM assembler 	 43

Chapter 3

3.7 Store-loading directives
The line takes the general form: {label} directive expression list
They place data in store at the current instruction location and advance the
instruction location pointer.

The possible directives are:

DCD or & which defines one or more words
DCW which defines one or more half-words (16-bit numbers)
DCB or = which defines one or more bytes.

expression list is a list of one or more numeric expressions, separated by
commas. In the case of DCB or =, the list may also include string
expressions, which causes the characters of the string to be loaded into
consecutive bytes in store. For example:

TABLE1 DCD 	VALUE1,VALUE2;load 2 words into Tablel
TABLE2 	 1,2,3,4,5,6 ;load 6 bytes into Table2
MESSAGE .■ 	 "Turn off motor"
ERRORM = 	99,"Error number 99",0
TABLE4 	= 	"""a sentence within quotes"""
TABLE5 	= 	1,2,3,"a","b",4,5,6
PROMPT = 	">" ;loads 62 into one byte of memory
PROMPT2 DCW 	">" ;loads 62, and then 0 into 2 bytes
PROMPT3 & 	">" ;loads 62,then 0,0,0 into 4 bytes

Loading memory with nulls has its own directive:

Syntax: {label} % numeric expression

For example:
BLANKS % 	&400 ;store 1K of nulls

3.7.1 Syntax differences
In AAsm, DCD can only take numeric expressions.

In ObjAsm, DCD can take a program-relative expression, even when the
code does not have an absolute origin.

44 	 ARM assembler

The assembler

3.8 The ALIGN directive
After using memory filling directives such as:

▪ "a long string" 	;messages
▪ 1,2,3,4,5 	 ;a long list
% 	VALUE4/SIZE 	 ;nulls

the program counter doesn't necessarily point to a word boundary, which it
must do if the file is to continue with program instructions. The alignment
of the PC to a word boundary is automatic if an instruction mnemonic is
encountered after the tables. The assembler will insert up to three nulls to
achieve automatic alignment. However, there are occasions when an
alignment needs to be forced.

ALIGN

on its own will set the instruction location to the next word boundary.
However, ALIGN can take two optional parameters:

ALIGN [power-of-two} [,offset-expression}

4 is the power-of-two default and 0 is the offset-expression default, so
ALIGN on its own will increment the PC to the next word boundary. Other
values will force the PC to align to any particular boundary needed by the
programmer. These extra arguments will only rarely be needed.

3.9 ?label
?label is used to interrogate a label and so find out how many bytes of code
were produced on its defining line. For a label on a line containing an
opcode mnemonic the length is 4, for a label on an otherwise blank line the
length is zero. For DCD, Dag, DCB and % directives, the length is the
combined length of all the operands.

For example:
STORE 	& 	1,2,3,4,5 ;5 words into STORE
STORELENGTH * 	?STORE 	;?STORE evaluates to 20

ARM assembler 	 45

Chapter 3

3.10 Literals
The directive LTORG (literal origin) is used to define an area in which to
place literals. Literals are addressed using PC relative addressing so large
programs may need several LTORG directives. Literals are intended to enable
the programmer to load immediate values into a register which might be out
of range as MOV/MVN arguments. The syntax for their use is: LDR register, =
expression

The assembler will then take certain actions. It will, if possible :

(1) Replace the instruction with a MOV or MVN, or

(2) Generate a program-relative instruction and if no such literal already
exists within the addressable range, then place the literal in the next literal
pool.

Literal values are stored in a literal pool which is either at the end of the file
or immediately following the next LTORG directive. Duplication of values in
the pool will be avoided, provided that any possible duplicate expressions
are evaluable on pass 1.

3.11 Laying out areas of memory
The assembler can lay out areas of memory. The start address of such an
area is given by the A directive.

Syntax: ^ expression

The origin of the storage area is set to expression, and a storage-area
location counter @ is also set to expression. The expression must be fully
evaluated on the first pass of the assembly, but may be program-relative. In
the absence of a ^ directive, the @ counter is set to zero.

Space is reserved by the # directive.
Syntax: {label} t expression

46 	 ARM assembler

The assembler

For example:
LABEL1 	# 	n 	;reserve n bytes

	code

	code

LABEL2 	# 	4 	;reserve 4 bytes,

;attached to the end of LABEL1's store

Every time # is encountered, the label is given the value of @, and then @
is incremented by the number of bytes reserved. The @ counter may be set
to another value any number of times by the repeated use of A and so
storage areas can be easily established anywhere in memOry.

A special extension of A allows a register to be attached to the base address
of a storage area:

A expression, register

The register introduced by this extra parameter is taken to be implicit in all
symbols defined by any # directives which follow, until cancelled by another
A directive. In this case expression must be an absolute value. For example:

SB 	 RN 	10 	;SB is register 10
0,SB ;@=0

Start 	 # 	0 	;i.e. [SB,#0]
Frame 	 # 	4 	;i.e. [SB,#0]
StaticBase 	# 	4 	;i.e. [SB,#4]
StaticBase Offset * 	StaticBase-Start

The subsequent # directives are therefore generating register-relative
symbols. This means that later in the source program, it becomes possible to
quote any symbol containing an implicit register name in a load Or store
instruction and the pre-indexed form of opcode will be generated.

ARM assembler 	 47

Chapter 3

FOr example, the valid line:

LDR (SB,#StaticBaseOffset)

can be replaced by the shorter line:

LDR R0, Stet icBa se

and the same code will be generated by the assembler.

3.11.1 Counter values
The current value of the assembler's program location counter is referred to
by the dot symbol while the current value of the storage-area location
counter is, as has already been noted, the '@' symbol. Since these symbols
are not particularly obvious (especially when appearing in expressions) they
may, if the programmer wishes, be replaced by (Pc) and (VAR)

respectively.

3.12 Variables
Symbols have a fixed value attached to them, derived from the first or
second pass of the assembly process. It is also possible to define symbols
which have a value which changes as the assembly proceeds. Such symbols
are called variables, and the ARM assembler has two types, local variables
and global variables. Global variables can operate over the entire source file,
whereas lOcal variables are accessible within the confines of a macro
expansion. Local variables are described in section 4.4.

3.12.1 Global variables
Variables must be declared before they are used. The three types of global
variable are arithmetical, logical and string, declared by respectively GBLA,

Gan and Gins. These symbols may now be used in expressions like
normal symbols. The directives SETA, SETL and SETS are prOvided to
alter the values of both global and lOcal variables.

Syntax: Gala variable name

Syntax: variable name SETx expression

48 	 ARM assembler

The assembler

For example:
count 	SETA count+1
message 	SETS "media error"

count and message can be used as required in the source file:

space 	# 	count
string 	6 	message

Any attempt to use them as labels will, quite rightly, cause the syntax
checker to issue error messages: they have been declared as global variables
and will not therefore be accepted as labels. However, if the $ symbol is
prefixed to them, variable substitution will take place before the line is
passed to the syntax checker. Logical and arithmetic variables will be
replaced by the result of applying :STR: to them. String variables will be
replaced by their value.

For example:
GBLS 	A
GBLA 	B
GBLL

;three variable types declared
A 	 SETS 	"Labname"
B 	 SETA 	1
C 	 SETL 	{TRUE}
;and duly set
;without $ they are rejected as labels
A 	 ADD 	R0,R0,R1; syntax error!
;with $ they are accepted
$A 	 AND 	R0,R1,#8
L$B 	AND 	R2,R3,#16
$C 	 AND 	R4,R5,#32

After the assembler has performed variable substitutiOn, its own internal
conception of the last three lines of sOurce can be considered as:

Labname 	AND 	R0,R1,#8
L00000001 	AND 	R2,R3,#16
TRUE 	AND 	R4,R5,#32

ARM assembler 	 49

Chapter 3

3.12.2 Other useful variables
The variables (PC) and {VAR} have already been explained, but there are
three other useful variables which take the bracketed form of { name } . These
are {TRUE} and {FALSE}, which are logical constants, and {OPT} which is
the value of the currently set printer output option. (The printer option
values are shown in section 5.9.4.) A simple but extremely useful way of
using {OPT} is to use it to store the currently set printer optiOns, force a
tempOrary change in printing mode, and then, later in the source code, to
restore the original value of {OPT} . For example:

GBLA 	AS_WAS
AS_WAS 	SETA 	{OPT}
;start of long section of code
;e.g. a macro

OPT 	2 	;turn off listing!
	lots of code 	
OPT 	AS_WAS ;restore print option

;end of long section of code

3.13 Local labels
Although normal labels may not begin with a digit, there is a special form
of local label which bears a number in the range 0-99. Such labels have
limited scope; their scope being delimited by ROUT directives.

50 	 ARM assembler

The assembler

The syntax to begin a new local label area is:
{label} ROUT

in the label and instruction fields respectively. The start of the source is the
start of the first local label area.

The local label definition syntax is:
number{routinename}

in the label field. The number must lie in the range 0-99. routinename need
not be present, but if it is it will be checked against the label on the last
ROUT directive. If no label is present on the last ROUT directive, yet a
routinename has been provided, an assembly error will be generated.

The syntax fOr the local label reference syntax is:

% {x}{y}n{routinename}

% The % symbol introduces a local label reference. It may be used anywhere
where an ordinary label reference is valid.

{x}{y} The optional letters x and y tell the assembler the direction and/or
level for the search of the locatiOn of the local label.

The {x} character:

absent 	look backwards and forwards for the label
look backwards for the label

F 	 look forwards for the label

searches for a local label will never go outside the current local label area -
that is, they will never go past a ROUT directive. The same local label may
be defined many times. The assembler always uses the first matching local
label that it finds in its search.

The {y} character:

absent 	loOk at this macro and all levels towards the source
A 	 look at all macro levels
T 	 look only at this macro level

The number n is the number given to the local label.

{routinename} is optional but if used, makes the source listing more
readable. If present the assembler will check it against the routine's label.

ARM assembler 	 51

Chapter 3

NORMLABEL ROUT 	;The routine is between the ROUTS.
	 ;Its name is NORMLABEL, but the
	 ;naming of the routine is optional

00 ;Local label 00

BEQ %00NORMLABEL ;Branch if equal to 00

01 ;Local label 01

NEXTROUTINE ROUT

Local labels can be used anywhere in the source file and are particularly
useful for the macro label uniqueness problem.

52 	 ARM assembler

The assembler

3.14 Error handling directives
As an aid to error trapping, the ASSERT directive is provided for use inside
and outside macros.

The syntax is: ASSERT logical expression

For example: ASSERT TEMPI < TEMP

If the logical expression returns a true result then nothing happens but a
false result will generate an error during the second pass of the assembly.
The error message is "Assert failed at line xxxxxx"

A similar directive ! is inspected on both passes of the assembler. This time
an arithmetic expression is evaluated:

! arithmetic expression,string expression

If the arithmetic expression = 0, no action is taken on pass 1 and the string
is printed out as a warning on pass 2. No error is generated.

If the arithmetic expression c> , 0 an error is produced and assembly halts
after pass 1.

The arithmetic expression is evaluated on pass one, so forward referencing is
nOt permitted. The string expression is printed as a warning or error, if
produced.

ARM assembler 	 53

Chapter 3

3.15 The ORG and LEADR directives
The prOgram starting point is determined by the ORG directive.

The syntax is: ORG absolute-expression

For example:

ORG 	6100 	;or

START 	 6100

ORG 	START

At most one ORG is allowed in the entire source and no ARM instructions
or assembler store directives can precede the ORG directive. ORG sets the
program location counter, the symbol for which is `.'. For AAsm, ORG also
sets the load and execute address for the code file. In the absence of an ORG

directive, the program is considered to be relocatable; the program location
counter is initially set to 0.

AAsm (but not ObjAsm) has a directive called LEADR, the load and execute
address. LEADR can be used with or without the ORG directive to indicate
the address at which the program should load and run. If ORG is present,
then LEADR will override its effect on load and execute addresses; the
purpose of the directive is to enable a default run address to be set fOr
relocatable binary output.

The syntax is: LEADR absolute-expression , for example:

LEADR 61000

3.16 The END directive
Processing of an input file stops on encountering END. If the input file was
part of a nested piece of assembly, invoked by a GET directive (see section
5.3), then assembly will continue within the file containing the GET, at the
line following the GET directive. Otherwise the current pass will stop. If this
was the first pass, and no errors have been generated, then assembly will
proceed to the second pass starting again in the original source file. Failing
to end a file with an END or LNK (see section 5.3), is an errOr. Any source
after END or LNK will be ignored by the assembler.

54 	 ARM assembler

4. Conditional assembly,
repetitive assembly
and macros

4.1 Conditional assembly
The [and] directives mark the start and finish of sections of the source
file which are to be assembled only if certain conditions are true. The basic
construction is IF...THEN...ENDIF, but ELSE is also supported, giving
the full IF .. .THEN...ELSE...ENDIF conditional assembly.

The start of the section is

[logical expression

and is known as the IF directive.

I

is the ELSE directive and

1

is the ENDIF directive.

If the logical expression yields a false result, the assembler immediately
searches for the I or I directive and will only continue assembly when one
of these is reached. Lines conditionally skipped by these directives are not
listed if —TERSE is given to the command line, Or TERSE ON is given to the
action prompt, or by default. If —NOTERSE is given to the command line, or
TERSE OFF is given to an action prompt, then conditionally skipped code
will be listed.

A block being conditionally assembled can itself contain more [I 1
directives, that is conditional assembly can be nested. It is also valid to
place more than one ELSE directive within an IF block. For example: here
is a notional data storage routine which can either use a disc or a tape data
storage system. To assemble the code for tape operation, the programmer
prepares the system by altering just one line of code, the label SWITCH.

ARM assembler 	 55

Chapter 4

DISC 	* 	0
TAPE 	* 	1
SWITCH * 	DISC

...code...

[SWITCH-TAPE

...tape interface code...

[SWITCH-DISC

...disc interface code...

...code continues...

or alternatively,

[SWITCH=TAPE

...tape interface code...

...disc interface code...

...code continues...

The IF construction can be used inside macro expansions as easily as it is
used in the main program.

56 	 ARM assembler

conditional assembly,

4.2 Repetitive assembly
It is often useful for program segments and macros to produce tables and to
do this they must be able to have a conditional looping statement. The ARM
assembler has the WHILE...WEND construction, and its use is much the
same as the similar form found in high level languages, taking the syntax:

WHILE logical expression
to start the repetitive block and

WEND

to end it.

For example:

GBLA 	counter

counter 	SETA 	100

WHILE counter >0

....do something....

counter 	SETA 	counter-1

WEND

Since the test for the WHILE condition is made at the top of the loop it is
possible that the source within the loop will not generate any code at all.

See section 4.1 for details of when conditionally skipped lines are listed.

ARM assembler 	 57

Chapter 4

4.3 Evaluating logical expressions
The ARM assembler provides six relational operators and fOur Boolean
operators which can be combined in various ways to form logical
expressions. The relational operators are:

operator 	meaning

equal to
greater than
less than

>= 	greater than or equal to
<= 	less than or equal to

<> or /= 	nOt equal to

The operands may be string, numeric, program-relative or register-relative
expressions, but must be of the same type. Note that a length 1 string will
be coerced to a numeric value if necessary.

When the operands evaluate to numbers, the comparisons are unsigned.
When using strings as the operands, the results are not always so
straightforward unless the simple case of <> or = is being used:

A < B if and only if A is a leading substring of B
A > B if and only if B < A
A <= B if and only if A < B or A=B
A >= B if and only if B <.■ A

For example:

"XY":CC:"Z" 	"XYZ" 	gives TRUE
"XYZ" 	<> "XYZ" 	gives FALSE
"XYZ" 	<> "XY" 	gives TRUE
" B " 	 "c" 	gives FALSE
"Bu 	< "C" 	 gives FALSE
"s" 	> "C" 	 gives FALSE

58 	 ARM assembler

Conditional assembly,

The logical operators : LOR: , :LAND:, : LEOR: and : LNOT: perform the
normal logical operations.
Thus:

• expression! : LOR: expression2 gives TRUE if either expression is
TRUE.

• expression! : LEOR: expression2 gives TRUE if one of the
expressions is TRUE but not both.

• expression! :LAND: expression2 gives TRUE if both expressions are
TRUE and FALSE otherwise.

• : LNOT: expression gives TRUE if the expression is FALSE, and vice
versa.

4.4 Macros
A macro facility allows similar pieces of code to be repeated throughout the
program. It can also be used to generate identical pieces of code in
situations where for some reason a call to a subroutine is not the optimum
solution. A macro must be able to change the code that it generates in
accordance with parameters passed to it.

Syntax: MACRO

The fact that a macro is about to be defined is given by the directive MACRO
in the instruction field.

This is immediately followed by a macro prototype statement which takes
the form:

{$ label} macroname parameter,$ parameter,$ parameter,...

1$ label} is optional. If present, it is treated as an additional parameter.

Parameters are passed to the macro as strings, and substituted before syntax
analysis. They are optional and any number of them may be given.

ARM assembler 	 59

Chapter 4

A short example will illustrate the use of a macro:

MACRO
$label 	MACRONAME $num,$string,$etc

$label lots of....
	code 	
▪ $num
▪ $string
▪ "the price is Seto"
▪ 0
MEND

MACRONAME is the name of this particular macro and $num, $string and
set c are its parameters. Other macros may have many mOre, others may
have none at all.

The body of the macro now follows, with $label being optional, even if it
was given in the macro prototype statement.

Note that Set c will be substituted into the string "the price is 	"
when the macro is used.

The macro ends with MEND.

The macro is called by using its name. Missing parameters are indicated by
commas, or may be omitted entirely if no more parameters are to follow.
Thus MACRONAME may be called in various ways:

MACRONAME 9,"disc",7

MACRONAME 9

MACRONAME ,"disc",

60 	 ARM assembler

Conaknalassembly

The $ symbol may be used in a string, provided that it is marked by a $$
escape sequence, for example:

"the price is $$$etc"

The SS will be interpreted as a real S, and then $etc will be correctly
interpreted as the parameter. This illustrates the important point that macro
parameters will be substituted wherever they occur in the macro's body.

4.4.1 Local variables
Local variables are similar to global variables, but may only be referenced
within the macro expansion in which they were defined. They must be
declared before they are used. The three types of local variable are
arithmetical, logical and string, declared by respectively LCLA, LCLL and
LCLS:

LCLA symbol ;Arithmetic type, initialised to zero.

LCLL symbol ;Logical type, initialised to FALSE.

LCLS symbol ;String type, initialised to a null string.

New values for local variables are assigned in precisely the same way as
new variables for global variables, that is using the directives SETA, SETL
and SETS . This would be given in the following form:

variable name SETx expression

4.4.2 The MEXIT directive
Normally macro expansion terminates on encountering the MEND directive, at
which point in time there must be no unclosed WHILE/WEND

loops or pieces of conditional assembly. Early termination of a macro
expansion can be forced by means of the MEXIT directive, and this may
occur within WHILE/WEND loops and conditiOnal assembly.

ARM assembler 	 61

Chapter 4

4.4.3 Default values
Syntax: $parameter=default value

For example: in the macro prototype statement of the MACRONAME macro
above, it is pOssible to write $num=10 and then when calling the macro a
vertical bar symbol 'I' causes the default value 10 to be used rather than the
value $num, so:

MACRONAME I,"disc",7

will be equivalent to:

MACRONAME 10,"disc",7

Quotes are used around the default value if embedded spaces or leading or
trailing spaces are needed as part of the default string, for example:

$string=" a default string "

If the default string needs to be in quotes itself, then a double quote is used
to distinguish the substituted quotes from the discarded quotes, for example:

$string="""hello world"""

will ultimately be substituted into the macro as "hello world".

4.4.4 The macro substitution method
Each line of a macro is scanned so it can be built up in stages before being
passed to the syntax analyser. The first stage is to substitute macro
parameters throughout the macro and then to consider the variables. If string
variables, logic variables and arithmetic variables are prefixed by the $
symbol they are substituted by putting in a string equivalent of them.
Normal syntax checking is performed upon the line after these substitutions
have been performed.

62 	 ARM assembler

Conditional assembly,

In certain circumstances it may be necessary to prefix a macro parameter or
variable to a label. In order to ensure that the assembler can recognise the
macro parameter or variable, it can be terminated by a dot `.' The dot will
be removed during substitutiOn.

For example:

MACRO

$T33 	MACRONAME

$T33.L25 lots of....

	code 	

MEND

If the dot had been omitted, the assembler would not have related the $T33

part of the label to the macro prototype statement and would have accepted
$T33L25 as a label in its own right — which was not the intention.

4.4.5 Nesting macros

The body of a macro can contain a call to another macro; in other words the
expansion of one macro can contain references to macros. Macros may be
nested up to a depth of 255.

ARM assembler 	 63

5. Assembling, link files, printing

5.1 The command line
The assembler is loaded by entering aasm on the ARM command line,
which has the effect of bringing up the assembler command level prompt,
which is:

Action:

In assembler command level a number of commands can be used:

Asm

Print

Symbol

Width number
Length number
Terse

Warning filename
Quit

Xref

Help

64 	 ARM assembler

Assembling, link files, printing

Capital letters indicate minimum abbreviations.

It is possible to add keywords to the aasm command to duplicate the effects
of mOst of these assembler level commands.

- FRom filename 	specifies source file
-TO filename 	 specifies object file
-Warning filename 	duplicates WARNING filename
- Print 	 duplicates PRINT ON

-NOPrint 	 duplicates PRINT OFF

- Quit 	 causes QUIT after the assembly
-NOQuit 	 does not cause QUIT after the assembly
- Terse 	 duplicates TERSE ON

- NOTerse 	 duplicates TERSE OFF
- Xref 	 duplicates XREF ON

-NOXref 	 duplicates XREF OFF
- WIdth number 	duplicates WIDTH number
- Length number 	duplicates LENGTH number

The defaults are -NOPRINT -NOQUIT -TERSE -XREF -WIDTH 131

-LENGTH 60.

- FROM and -TO have no effect unless both are specified. If both are
specified, an assembly is performed immediately using the specified files.
The parameters belonging to -FROM and -TO may be specified without
specifying the key words.

ARM assembler 	 65

Chapter 5

5.2 Assembling a program
The prompt may be followed specifically as in —

Action : ASM

Source filename : filename

Object filename : object filename

or more succinctly —

Action : A filename object filename

The assembler will load the file and attempt to assemble it, indicating that it
is running a first pass. Any discrepancies in the format or syntax of the
source will be detected and the appropriate error message, line number, and
the offending line itself will be printed. Linked source files will be fetched if
the primary source asks for them to be included.

If no errors are detected, the second pass will be started and an object file
will be built up. A complete list of error messages is given in appendix B.

66 	 ARM assembler

Assembling, link files, printing

5.3 Linking source files
The GET directive in the source file is used to include a secondary source
file within the current assembly. The syntax within the source code is:

GET filename

In this case assembly continues in the original source when assembly of the
secondary source file is complete. The secondary source file must be
terminated by an END or LNK directive, and may include further GET
directives.

In the following example the primary file is called file_a :

SYM1 	* 	SYM2+100

....file_a code....

GET file_b

....more file_a....
	code 	

END

This is the secondary file, file_b :
SYM2 	* 	200

END

Symbol SYM1 takes the value 300. There are two pOints tO notice in this
example:

file_b has no ORG statement and so the program counter merely continues
its increment as file_b is assembled. Had the secondary file been given an
ORG of its own, an error would be flagged. file_b must have an END
directive, whereupOn cOntrol passes back tO file_a.

Alternatively, the secondary file can be called using LNK:

LNK 	filename

ARM assembler 	 67

Chapter 5

Now, when the secondary file is assembled, there will be no return to the
primary file. LNK is generally used to split large source files into sequences
of smaller more manageable ones. GET is generally used for inclusion of
standard code such as macro libraries.

5.4 The object file
The object file can be loaded and executed by the command:

*RUN filename

5.5 The SYMBOL command
After an assembly all the symbols encountered can be listed if the SYMBOL

command is given. Typing SYMBOL brings the prompt Option: onto the
screen. The valid optiOns are A, N, s and HELP. Usually, SYMBOL will
be typed with the OptiOn letter (or HELP) on the same line.

SYMBOL A

gives an alphabetic listing of the symbols and their hex values.

SYMBOL N

gives a numeric listing of the symbols and their hex values.

SYMBOL S

gives no automatic symbol list but instead prompts for a symbol name. The
name will then be printed, together with its value. To return from this
prompt to the optiOn prompt type a dot `.'

Symbols declared but unused are marked with a "*"

The format of the symbol table is designed, as neatly as possible, to fit the
current WIDTH and LENGTH settings.

To return from the option prompt to the action prompt type quit.

68 	 ARM assembler

Assembling, link files, printing

5.6 The XREF command
XREF ON is a command to the assembler which causes it to collect (on the
next assembly) cross-reference information for all the symbols used When
the SYMBOL command is next used, not only will the actual values of the
symbols be supplied but also information on where the symbol was defined
and where it was used (line numbers within macros and line numbers within
files) will be given. The XREF OFF cancels the effect of XREF ON. Typing
XREF on its own prints the prompt Option: onto the screen. The valid
options are XREF ON, XREF OFF and HELP.

5.7 The WARNING command
WARNING filename specifies a file which will receive all error warnings from
the assembler. This file will be closed when the assembly has finished.
Typing WARNING on its own prints the words Error file name: onto the
screen and so prompts for a filename to be entered. Note that typing
WARNING HELP creates a filename called 'HELP'.

5.8 The QUIT command
QUIT, if specified, causes the assembler to terminate.

5.9 Assembler print commands
Assembler source code may be viewed directly from the TWIN editor, or
from within the assembler using the command PRINT ON. This command
turns on the assembler screen listing, and on subsequent assemblies, the
source code, Object code, memory addresses and reference line numbers will
be printed on the screen. PRINT OFF turns this facility off. Typing PRINT

on its own brings the prompt Option: onto the screen. The valid options
are PRINT ON, PRINT OFF and HELP. The default condition is PRINT

OFF.

ARM assembler 	 69

Chapter 5

5.9.1 WIDTH n
The width of the output can be specified using this command. n should be a
number between 1 and 254, and for screen output WIDTH 80 is probably the
most suitable choice. If a source line has characters and spaces giving it a
length greater than n, the excess is printed on subsequent lines. The default
for n is 131, which is a convenient width for many printers. If no number is
given, the prompt value: is put on the screen.

5.9.2 LENGTH n
The number of lines output per page can be specified using this command. n
should be a number between 1 and 254. After n lines have been output, the
assembler gives a form feed command which steps the printer onto the next
perforation (assuming that continuous paper is used and has been properly
loaded) and clears the screen on the computer. Page lengths of between 60
and 70 are suitable for most sizes of stationery. The default for n is 60. If
no number is given, the prompt Value: is put on the screen.

5.9.3 TERSE
TERSE ON, which is the default, ensures that code which is conditionally
not assembled is not printed. TERSE OFF allows the printing of unelected
code. Typing TERSE on its own prints the prompt Option: onto the
screen. The valid options are TERSE ON, TERSE OFF and HELP.

70 	 ARM assembler

Assembling, link files, printing

5.9.4 Dynamic print options
The output of the listing can be controlled at assembly time by directives
placed in the source code, provided that the PRINT ON command is in
force.

OPT n

There are 14 options which take effect as they are encountered in the listing.
n is a numeric expression. It may be any of the following, or any sum of
them; for example, OPT 1025 will turn on both pass one and normal listing.

OPT 1

Turn on listing.

OPT 2

Turn off listing.

OPT 4

Page throw. Issues an immediate form feed and so starts a new page.

OPT 8

Reset the line number counter to zero.

OPT 16

Turn on the listing of SET, GBL and LCL directives.

OPT 32

Turn off the listing of SET, GBL and LCL directives.

OPT 64

Turn on the listing of MACRO expansions.

OPT 128

Turn off the listing of MACRO expansions.

OPT 256

Turn on the listing Of MACRO calls.

OPT 512

Turn off the listing of MACRO calls.

OPT 1024

ARM assembler 	 71

Chapter 5

Turn On the pass one listing.

OPT 2048

Turn off the pass one listing.

OPT 4096

Turn on the listing of cOnditional directives.

OPT 8192

Turn Off the listing of conditional directives.

The default settings are:

listing on
SET, GBL, LCL on
macro expansion on
macro calls on
pass one listing off
conditional directives on.

72 	 ARM assembler

Assembling, link files, printing

5.9.5 TTL
Syntax: TTL string

This directive creates a title which will be used on all subsequent pages until
either the assembly is complete or another TTL directive creates adifferent
title. TTL on its own creates a title consisting of a blank line.

5.9.6 SUBTTL
Syntax: SUBTTL string

This directive creates a subtitle, which will be printed directly beneath the
title. As with TTL, its effect remains until a new SUBTTL is issued.

If two or more TTL or TTL/SUBTTL combinations occur before the next
page break, only the latest of the combinations will be obeyed. Forcing a
new page immediately after a TTL will ensure that the title is printed and it
may be necessary to do this if different titles separated by only small
quantities of source listing are required.

ARM assembler 	 73

6. Appendix A

6.1 ARM instruction set
There are 16 instructions determined by the bit-pattern in B24-B27, divided
into 5 classes.

74 	 ARM assembler

Appendix A

B27 	B26 B25 B24 Mnemonics Instruction type

1 	0 	1 	0 	B 	} BRANCH
)
1 	0 	1 	1 	BL 	} BRANCH WITH LINK

0 	0 	0 	X 	various 	} DATA
) PROCESSING
0 	0 	1 	X 	various 	} GROUP

0 	1 	0 	0 	LDR/STR }
 	}
0 	1 	0 	1 	LDR/STR } SINGLE
	 } DATA TRANSFER
0 	1 	1 	0 	LDR/STR } GROUP
 	}
0 	1 	1 	1 	LDR/STR }

1 	0 	0 	0 	LDM/STM } BLOCK DATA
} TRANSFER post inc/dec

 	}
1 	0 	0 	1 	LDM/STM } BLOCK DATA

} TRANSFER pre inc/dec

1 	1 	1 	1 	SWI 	SUPERVISOR CALL

1 	1 	0 	0 	 }
	 } reserved
1 	1 	0 	1 	 } for future
	 } expansion
1 	1 	1 	0 	 }

Bits 31 to 28 encode the condition. The basic instruction set is expanded by
altering the pattern of the remaining 24 bits. The main AAsm mnemonic
combinations are as fOllOws:

ARM assembler 	 75

Chapter 6

THE ROOT INSTRUCTIONS
All carry the optiOnal conditional postfix {cc}.

Branch Group
B{cc} Branch
BL{cc} Branch with Link

Data PrOcessing GrOup
ADC{cc} Add with Carry
ADD{cc} Add
AND{cc} Bitwise And
BIC{cc} Bit Clear
CMN{cc} Compare Negated
CMP{cc} COmpare
EOR{cc} Bitwise Exclusive Or
MOV{cc} Move
MVN{cc} Move NOt
ORR{cc} Bitwise Or
RSB{cc} Reverse Subtract
RSC{cc} Reverse Subtract with Carry
SBC{cc} Subtract with Carry
SUB{cc} Subtract
TEQ{cc} Test Equivalence
TST{cc} Test and Mask

S may follow these mnemOnics.
P may follow CMP, CMN, TST or TEQ.

S - - Set Condition Codes.
P - - Make Rd=R15 for CMP, CMN, TEQ and TST.

S is included by the assembler
for CMP, CMN, TEQ and TST.

76 	 ARM assembler

Appendix A

Single Data Transfer Group
LDR{CC}

STR{cc}

B or T may follow these mnemonics.
B - - perform a byte transfer, not a word transfer.
T - - Set the Translate bit.

Block Data Transfer Group
LDM{cc)
STM{cc}
One of the suffixes DA, DB, IA, IB, EA, ED, FA, FD must follow.

Supervisor Call
SWI{cc}

ARM assembler 	 77

7. Appendix B

7.1 AAsm and ObjAsm error messages
Area directive missing
An attempt has been made to generate code or data before the first area
directive.

Area name missing
The name for the area has been omitted from an AREA directive.

Bad alignment boundary
An alignment has been given which is not a power of two.

Bad area attribute or alignment
Unknown attribute or alignment not in the range 2-12.

Bad based number
A digit has been given in a based number which is not less than the base,
for example: 7_8.

Bad exported name
The wording following the EXPORT directive is syntactically not a name.

Bad exported symbol type
The exported symbol is not a program-relative symbol.

Bad expression type
For example: a number was expected but a string was encountered.

Bad global name
An incOrrect character appears in the global name.

Bad hexadecimal number
The & introducing a hexadecimal number is not follOwed by a valid
hexadecimal digit.

Bad imported name
The wording following the IMPORT directive is syntactically not a name.

Bad local label number
A local label number must be in the range 0-99.

Bad local name
An incorrect character appears in the local name.

78 	 ARM assembler

Appendix B

Bad opcode symbol

A symbol has been encountered in the opcode field which is not a directive
and is syntactically not a label.

Bad operand type

For example: a logical value was supplied where a string was required.

Bad operator

The name between colons is not an operator name.

Bad register name symbol

A register name is wrong.

Bad register range

A register range from a higher to a lower register has been given, for
example: R4-R2 has been typed.

Bad rotator

The rotator value supplied must be even and in the range 0-30.

Bad shift name

A syntactically incorrect shift name.

Bad symbol

Syntax error in a symbol name.

Bad symbol type

This will occur after a # or * directive and it means that the symbol being
defined is already assumed to be of a type which cannot be defined in this
way.

Branch offset out of range

The destination of a branch is nOt within the ARM address space.

Code generated in data area

An Opcode has been found in an area which is not a code area.

Data transfer offset out of range

The immediate value in a data transfer opcode must be in the range
—4095 <= e <= +4095.

Decimal overflow

The number exceeds 32 bits.

Entry address already set

This is the second or subsequent ENTRY directive.

Error in macro parameters

ARM assembler 	 79

Chapter 7

The macro parameters do not match the protOtype statement in some way.

External area relocatable symbol used
A symbol which is an address in another area has been used in a non-trivial
expression.

Externals not valid in expressions
An imported symbol has been used in a non-trivial expression.

Global name already exists
This name has already been used in some other context.

Hexadecimal overflow
The number exceeds 32 bits.

Illegal line start should be blank
A label has been found at the start of a line with a directive which cannot
be labelled.

Immediate value out of range
A register to register opcode cannot perform a suitable rOtation on the value
supplied to bring it into 8-bit range.

Imported name already exists
The name has already been defined or used for something else.

Incorrect routine name
The optional name following a branch to a local label or on a local label
definition does not match the routine's name.

Invalid line start
A line may only start with a letter character (the first letter of a label), a
digit (the first character of a local label), a semi-colon or a space.

Label missing from line start
The absence of a label where one is required, for example in the * directive.

Local name already exists
A local name has been defined more than once.

Locals not allowed outside macros
A local variable has been defined or set in the main body of the source file.

MEND not allowed within conditionals
A MEND has been found amongst [|] 	or WHILE/WEND directives.

Missing close bracket
A missing close bracket or too many opening brackets.

80 	 ARM assembler

Appendix B

Missing close quote

No closing quote.

Missing close square bracket

A I is absent.

Missing comma

Syntax error due to missing comma.

Missing hash

The hash preceding an immediate value has been forgotten. Missing open
bracket

A missing open bracket or too many closing brackets.

Multiply defined symbol

A symbol has been defined more than once.

No current macro expansion
A MEND, MEXIT or local variable has been encountered but there is no
corresponding MACRO.

Numeric overflow

The number exceeds 32 bits.

Register symbol already defined

A register symbol has been defined more than once.

Register value out of range

Register values must be in the range 0-15.

Shift option out of range

The range permitted is 0-31. 1-32 or 1-31 depending on the shift type.

String overflow

Concatenation has produced a string of more than 256 characters.

String too short for operation

An attempt has been made to manipulate a string which has insufficient
characters in it.

Symbol missing

An attempt has been made to reference the length attribute of a symbol but
the symbol was omitted or the name found was not recognised as a symbol.

Syntax error following directive

An operand has been provided to a directive which cannot take one, for
example: the 'I' directive.

ARM assembler 	 81

Chapter 7

Syntax error following label
A label can only be followed by spaces, a semi-colon or the end-of-line
symbol.

Syntax error following local label definition
A space, cOmment, or end-of-line did not immediately follow the local label.

Too late to set origin now
The ORG must be set before the assembler generates code.

Too many actual parameters
A macro call is trying to pass too many parameters.

Translate not allowed in pre-indexed form
The translate optiOn may not be specified in pre-indexed forms of LDR and
STR.

Undefined exported symbol
The symbol exported is undefined.

Undefined symbol
A symbol has not been given a value.

Unexpected characters at end of line
The line is syntactically complete, but more information is present. The
semi-colon prefixing comments may have been omitted.

Unexpected operand
An operand has been found where a binary operator was expected.

Unexpected operator
A non-unary operator has been found where an operand was expected.

Unexpected unary operator
A unary operator has been fOund where a binary operator was expected.

Unknown opcode
A name in the opcode field which is neither an opcode nor a directive, nor a
macro.

Unknown operand
An operand in the bracketed format {PC} {VAR} {OPT} {TRUE} {FALSE}
is not of the correct form.

Unknown or wrong type of global/local symbol
Type mismatch, for example, attempting to set or reset the value of a local
or global symbOl as lOgical, where it is a string type.

82 	 ARM assembler

Appendix B

Unknown shift name

Not one of the six legal shift mnemonics.

The acceptable syntax for the various directives is shOwn in this table:

no label 	 an expression is expected
I 	no label 	 takes no expression
1 	no label 	 takes no expression

no label 	 two expressions are expected
optional label 	an expression is expected

* (EQU) label 	 an expression is expected
= (DCB) optional label 	an expression list is expected

optional label 	an expression is expected
DCW 	optional label 	an expression list is expected
& (DCD) optional label 	an expression list is expected

no label 	 expression and optional register expected
END 	no checking performed
LNK 	no checking performed
GET 	no label 	 a filename is expected
ORG 	no label 	 an expression is expected
OPT 	no label 	 an expression is expected
TTL 	no label
SUBTTL no label
RN 	label 	 an expression is expected

ARM assembler 	 83

Chapter 7

WHILE 	 no label 	 an expression is expected
WEND 	 no label 	 takes no expression
MACRO 	 nO label 	 takes no expression
MEXIT 	 no label 	 takes no expression
MEND 	 no label 	 takes no expression
GBLA 	 no label 	 a symbol is expected
GBLL 	 no label 	 a symbol is expected
GBLS 	 no label 	 a symbol is expected
LCLA 	 no label 	 a symbol is expected
LCLL 	 no label 	 a symbol is expected
LCLS 	 no label 	 a symbol is expected
SETA 	 label 	 an expression is expected
SETL 	 label 	 an expression is expected
SETS 	 label 	 an expression is expected
ASSERT 	 no label 	 an expression is expected
ROUT 	 label 	 takes no expression
ALIGN 	 no label 	 one or two expressions expected
LTORG 	 no label 	 takes no expression
LEADR 	 no label 	 an expression is expected

84 	 ARM assembler

8. Appendix C

8.1 Example AAsm file

Switch on the computer.

The ARM A* prompt appears.

Load TWIN from the filing system by typing:

TWIN (RETURN)

Type the following into TWIN, placing
[RETURN)as necessary at the end of each line.

-> test

ORG &1000

SWI 17

END

This source file is now saved using the name taken from the ; -> line at
the top of the TWIN file. Note that filename follows the -> (dash, greater
than symbols), and that -> must be on line one of the TWIN document.

Next, obtain an ARM command line and load the assembler.

*aasm (RETURN)

The screen will show:

ARM stand alone Macro Assembler Version x.xx

Entering interactive mode

Action:

To which responses shOuld be made which culminate in the following
display being achieved:

Action: ASM

Source file name: test

Code file name: testc

Pass 1

Pass 2

ARM assembler 	 85

Chapter 8

Assembly complete

No errors found

Action:

Both passes ran, with no errors reported.

The program may now be executed by leaving AASM:

Action: quit

And the program can be run:

*tests

tests will now run, finishing very quickly.

86 	 ARM assembler

9. Appendix D

9.1 ObjAsm directives
ObjAsm is the ARM Assembler which creates Acorn Object File code. The
new directives of ObjAsm listed here should be read in conjunction with the
ARM utilities user guide explaining Acorn Object File (AOF) code.

9.1.1 AREA
This directive gives a name plus optional attributes and alignment to the
area in which the code/data following is to be put. The basic form of the
directive is AREA symbol. The symbol is the name of an area and as such it
is an external symbol which can be used in the link phase of processing:
other programs may import the symbol and make use of it. The value of the
symbol may be taken to be Offset zero from the start of the area.

A list of attributes may follow the symbol thus:

AREA symbol{,attr}{,attr}....{, a 1 ign =expression}

The attributes, many of which are self-explanatory, are as follows:

ABS 	 Absolute : this area has a fixed position in the memory
map.

RE L 	 Relocatable : this area may be relocated by the linker.

PiC 	 Position Independent Code : this code may be loaded
anywhere without modification.

CODE 	 This area contains code (and is therefore read only).

DATA 	 This area contains read-write data.

READ ON LY 	This area may not be written.

COMDEF 	Common area definition

COMMON 	A common area

The last two are required by Fortran.

ARM assembler 	 87

Chapter 9

ALIGN=expression

The expression shOuld be between 2 and 12. This specifics a power of two,
that is a 2 would give an alignment to a 4-byte (word) boundary; a 3 would
give an alignment to an 8-byte boundary and so on. The ALIGN parameter
may be needed to make sure the area maintains a sound alignment when it
becomes attached to other areas during linking. The default alignment is 2,
that is word alignment.

9.1.2 IMPORT
Syntax: IMPORT symbol

IMPORT is followed by a symbol which is treated as a program address. It
provides the assembler with a name which may be referred to but which is
not defined within this assembly. It must therefore be imported at link time
from another piece of the AOF code, when its value will be ascertained and
used.

9.1.3 EXPORT
Syntax: EXPORT symbol

EXPORT is also followed by a symbol. This time the symbOl is being
declared for use by other AOF files at link time.

9.1.4 ENTRY
Syntax: ENTRY

If the file contains the directive ENTRY it is signalling to the whole program
(contained in the various AOF files) that the address computed for ENTRY
(that is the value of the program location counter when ENTRY is assembled)
is the execute address for the entire program.

88 	 ARM assembler

Appendix D

9.1.5 KEEP
Syntax: KEEP symbol

The linker will not normally keep track of symbols it does not need, and
when operating in -adfs mode it keeps no symbols at all. However, when
-adfs is not specified for the link operation, a table of all required external
symbols is maintained. To force the linker to retain symbols it would
otherwise consider unnecessary, a -keep is added to the link operation.
ObjAsm's own directive KEEP has the function of declaring a symbol which
is not needed by the AOF, but which can be maintained in the AOF symbol
table.

In this way (provided -adfs mode is 'off' and -keep mode is 'on' when
the link is performed), symbols of use to a symbolic debugger can be stored
and will not be lost.

9.1.6 DCD
DCD in ObjAsm will accept program-relative expressions and imported
symbols for its operands, as well as the numeric expressions as used by
AAsm.

9.1.7 Literals
Program-relative expressions and imported symbols are also valid literals in
ObjAsm.

9.1.8 Branch destinations
Imported symbols and program-relative symbols not defined in the current
area are valid operands to the branch and branch and link instructions. Note
that imported symbols, and program-relative symbols not defined in the
current area are not valid in general expressions.

ARM assembler 	 89

Chapter 9

9.1.9 ObjAsm error messages
Objasm has 12 errOr messages of its own, in addition to those of AAsm.
(appendix B cOntains the full list of AAsm and ObjAsm error messages,
explained in mOre detail.)

Area directive missing
Area name missing
Bad area attribute or alignment
Bad exported name
Bad exported symbol type
Bad imported name
Code generated in data area
Entry address already set
External area relocatable symbol used
Externals not valid in expressions
Imported name already exists
Undefined exported symbol

90 	 ARM assembler

10. Appendix E

Modes and registers
The ARM has four modes of operation, user mode, supervisor mode,
interrupt mode and fast interrupt mode. The mode in which the processor
runs is determined by the state of bits 0 and 1 in the Processor Status
Register. The processor has 25 physical registers, but the state of the mode
bits determine which 16 registers, R0-R15, will be seen by the programmer.
The four modes available are shown in the diagram which follows.

value of mode bits

	

0 	1 	2 	 3

user/normal 	FIQ 	IRQ 	SVC/abort/undefined

	

R0 	R0 	R0 	R0

	

I 	 I 	 I 	 I

	

I 	 I 	 I 	 I

	

R10 	R10_FIQ 	R10 	R10
	R11 	R11_FIQ 	R11 	R11

	

R12 	R12_FIQ 	R12 	R12

	

R13 	R13_FIQ 	R13_IRQ 	R13_SVC

	

R14 	R14_FIQ 	R14_IRQ 	R14_SVC

	

R15 	R15 	R15 	R15

In each mode the conceptual registers R0-R9 and R15 correspond to the
physical registers R0-R9 and R15.

10.1 Mode 0:
User mode is the normal program execution state; registers R0-15 exist
directly and in this mOde only the N, Z, C and V bits of the PSR may be
changed.

ARM assembler 	 91

Chapter 10

10.2 Mode 1:
The FIQ processing state has five private registers mapped to R10-14
(R10_FIQ-R14_FIQ) and a fast interrupt will not destroy anything in R10-
R14. MOst FIQ programs, particularly those used for data transfer, will not
need to use R0-R9, but if they do, then R0-R9 can be saved in memory
using a single instruction.

10.3 Mode 2:
The IRQ processing state has two private registers mapped to R13, R14
(R13_IRQ, R14_IRQ). If other registers are needed, their contents should be
saved in memOry using the single instruction available for this purpose.

10.4 Mode 3:
Supervisor mode (entered on SVC calls and other traps) also has two private
registers mapped to R13, R14 (R13_SVC, R14_SVC). If other registers are
needed, they tOo must be saved in memory.

Non-user mOdes are privileged and allow trusted software to take control in
a suitably protected system.

92 	 ARM assembler

Appendix E

10.5 Changing modes.
In the assembler, the action of {P} is used to change the PSR; this enables
the TEQ instruction to change the ARM's mode, for example:

TEQP R15,82 changes to IRQ mode

TEQP R15,#0 changes to user mode

The action is to exclusive OR the first operand with a supplied immediate
field. R15 is being used as the first operand. Whenever R15 is presented to
the processor as the first operand, 24 bits are presented; the PSR bits are
supplied as zero. The TEQ causes the immediate field value to be written
into the register, and the P causes the PSR bits (now altered by the
immediate field value) to be written back into R15. Since two of the PSR
bits are the mode-control bits, the processor assumes its new mode. As the
mode control bits cannot be set in user mOde, this technique will not work
in user mode. The only way to pass from user mode to other modes are
either to receive an external interrupt, or to make use of the SWI instruction.

ARM assembler 	 93

11. Appendix F

Source code examples

The follOwing examples shOw ways in which the basic ARM instructions
can combine to give efficient code. None of these methods saves a great
deal of execution time (although they all save some), mostly they just save
code.

11.1 Using the conditional instructions

(1) Using conditiOnals for logical OR

CMP Rn,#p ;IF Rn-p OR Rm=q THEN GOTO Label
BEQ Label
CMP Rm,#q
BEQ Label

can be replaced by

CMP Rn,#p
CMPNE Rm,#q ;if condition not satisfied try
BEQ Label ;another test

(2) Absolute value

TEQ 	Rn,#0 	;test sign
RSBMI Rn,Rn,#0 	;and 2's complement if necessary

94 	 ARM assembler

Appendix F

(3) Unsigned 32-bit multiply

;enter with numbers in Ra, Rb

MOV Rm,#0 	 ;result register
Loop MOVS Ra,Ra,LSR #1

ADDCS Rm,Rm,Rb

ADD Rb,Rb,Rb

BNE Loop ;stops when Ra becomes zero

;Rm contains Ra*Rb

;(Ra set to zero, Rb junk)

(4) Combining discrete and range tests

TEQ Rc,#127 	 ;discrete test

CMPNE Rc,#" "-1 	;range test
MOVLS Rc,#"." 	 ;IF Rc< " " OR Rc-CHR$127

;THEN Rc:="."

(5) Division and remainder

;enter with numbers in Ra and Rb

MOV Rcnt,#1 	;bit to control the division

Div1 CMP Rb,Ra

MOVCC Rb,Rb,ASL #1

MOVCC Rcnt,Rcnt,ASL #1

BCC Div1

MOV Rc,#0

Div2 CMP Ra,Rb 	 ;test for possible subtraction

SUBCS Ra,Ra,Rb 	;subtract if ok

ADDCS Rc,Rc,Rcnt 	;put relevant bit into result

MOVS Rcnt,Rcnt,LSR #1;shift control bit

MOVNE Rb,Rb,LSR #1 	;halve unless finished

BNE Div2

;divide result in Rc

;remainder in Ra

ARM assembler 	 95

Chapter II

11.2 Pseudo-random binary sequence generator

It is often necessary to generate (pseudo-) random numbers and the most
efficient algorithms are based on shift generators with exclusive or feedback
rather like a cyclic redundancy check generator. Unfortunately the sequence
of a 32-bit generator needs more than one feedback tap to be maximal
length (that is 2 1%32-1 cycles before repetition). A 33-bit shift generator with
taps at bits 20 and 33 is required. The basic algorithm is newbit:=bit33 eor
bit20, shift left the 33 bit number and put in newbit at the bottom. Then do
this for all the newbits needed, that is 32 of them. Luckily this can all be
done in five S cycles:

;enter with seed in Ra (32 bits),Rb (1 bit in Rb lsb)
;uses Rc

TST Rb,Rb,LSR #1 	;top bit into carry
MOVS Rc,Ra,RRX 	;33 bit rotate right
ADC Rb,Rb,Rb 	;carry into lsb of Rb
EOR 	Rc,Rc,Ra,LSL#12 ;(involved!)
EOR Ra,Rc,Rc,LSR#20 ;(similarly involved!)

;new seed in Ra, Rb as before

11.3 Multiplication by a constant

(1) Multiplication by 2^n (1,2,4,8,16,32..):

MOV Ra,Ra,LSL #n

(2) MultiplicatiOn by 2^n+1 (3,5,9,17..):

ADD Ra,Ra,Ra,LSL #n

96 	 ARM assembler

Appendix F

(3) Multiplication by 2^n-1 (3,7,15..):

RSB Ra,Ra,Ra,LSL #n

(4) Multiplication by 6:

ADD Ra,Ra,Ra,LSL #1 ;multiply by 3
MOV Ra,Ra,LSL #1 	;and then by 2

(5) Multiply by 10 and add in extra number:

ADD Ra,Ra,Ra,LSL #2 ;multiply by 5
ADD Ra,Rc,Ra,LSL #1 ;multiply by 2

;and add in next digit

(6) General recursive method for Rb := Ra*C, C a constant:

(a) If C even, say C = 2^n*D, D odd:

D=1 : MOV Rb,Ra,LSL #n
D<>1: (Rb := Ra*D}

MOV Rb,Rb,LSL #n

(b) If C MOD 4 = 1, say C = 2.^n*D+1, D odd, n>1:

D=1 : ADD 	Rb,Ra,Ra,LSL #n
D<>1: (Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n

	

ARM assembler 	 97

Chapter I1

(c) If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1 : RSB 	Rb,Ra,Ra,LSL #n

D<>1: {RID := Ra*D}

RSB Rb,Ra,Rb,LSL #n

This is nOt quite optimal, but close. An example of its non-optimality is
multiply by 45 which is done by:

RSB Rb,Ra,Ra,LSL #2 ;multiply by 3
RSB Rb,Ra,Rb,LSL #2 ;multiply by 4*3-1 = 11

ADD Rb,Ra,Rb,LSL #2 ;multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL #3 ;multiply by 9

ADD Rb,Rb,Rb,LSL #2 ;multiply by 5*9 = 45

98 	 ARM assembler

Appendix F

11.4 Loading a word from an unknown
alignment

There is no instruction to load a word from an unknown alignment. To do
this requires some code (which can be a macro) along the following lines:

;enter with 32-bit address in Ra
;uses Rb, Rc; result in Rd
;Note d must be less than c

BIC 	Rb,Ra,#3 	;get word-aligned address
LDMIA Rb,(Rd,Rc) 	;get 64 bits containing answer
AND 	Rb,Ra,#3 	;correction factor in bytes

MOVS Rb,Rb,LSL #3 ;..now in bits and test if aligned

MOVNE Rd,Rd,LSR Rb ;produce bottom of result word

;if not aligned

RSBNE Rb,Rb,#32 	;get other shift amount

ORRNE Rd,Rd,Rc,LSL Rb ;combine two halves to get result

11.5 Sign/zero extension of a half word

MOV Ra,Ra,LSL #16 	;move to top
MOV Ra,Ra,LSR #16 	;and back to bottom

;use ASR to get

;sign extended version

ARM assembler 	 99

Chapter 11

11.6 Return setting condition codes

CFLAG * 	&20000000
BICS PC,R14,#CFLAG ;returns clearing C flag

;from link register
ORRCCS PC,R14,#CFLAG ;conditiona11y returns

;setting C flag

;This code should not be used except in User mode
;since it wi11 reset the interrupt mode to the state
;which existed when the R14 was set up.
;This generally applies to non-user mode programming:
; e.g. MOVS PC,R14. MOV PC,R14 is safer!

100 	 ARM assembler

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112

