

The RISC OS Drag-and-Drop
System

This application note describes how drag-and-drop data transfer within and between
applications could be implemented, and how to make sure that your applications co-operate
with others to promote consistent data transfer facilities.

This application note is based on a protocol designed by Iota Software Ltd.

Applicable
Hardware :

All Acorn RISC OS based
computers

Support Group
Acorn Computers Ltd
Acorn House
Vision Park, Histon
Cambridge CB4 4AE
England

Related
Application
Notes:

Copyright © Acorn Computers Limited 1993

Every effort has been made to ensure that the information in this leaflet is true and correct at
the time of printing. However, the products described in this leaflet are subject to continuous
development and improvements and Acorn Computers Limited reserves the right to change
its specifications at any time. Acorn Computers Limited cannot accept liability for any loss
or damage arising from the use of any information or particulars in this leaflet. ACORN,
ECONET and ARCHIMEDES are trademarks of Acorn Computers Limited.

The RISC OS Selection Model
and Clipboard

8th October 1993

Support Group Application Note
Number: 241
Issue: 1.00
Author: SH/(JB)

Drag and Drop

The goal of this protocol is to allow the user to copy and move data, both within and between applications,
by direct manipulation. This means that the user should be able to make a selection in a document, pick the
selected objects up with the mouse, drag them to their destination and release the mouse button. To
facilitate precise positioning of the dragged objects, provision is made for the receiving task to display a
ghost caret, which tracks the mouse pointer in the target window and indicates exactly where the data will
be inserted. For text, the ghost caret should look similar to the normal Wimp caret, and as its follows the
mouse pointer it should "snap" to the nearest inter-character gap. The appearance of a ghost caret for non-
textual selections will vary, but might typically be the bounding box of the dragged data, scaled according
to the destination window's zoom factors.

This document assumes that you have implemented the selection system described in the application note
The RISC OS Selection Model and Clipboard.

User Interface

The following mouse controls exist on a text area. Non-textual documents will work similarly, but the
details of the selection model and visual feedback may differ according to the nature of the data being
manipulated.

Clicking Select where there is no selection sets the caret position

Clicking Adjust when there is a caret creates a selection between the old caret position and the
mouse position.

Dragging with Select where there is no selection starts a new selection, and subsequent dragging
moves the other end.

Dragging with Adjust alters the ‘nearest’ end of the selection.

Clicking Select over the selection has no effect (to allow the drag to occur properly - see below).

Dragging with Select over the selection causes a box the size of the selection to be dragged.
While the box is being dragged over a potential destination, a ghost caret may be displayed
by the application that owns the destination window.

While a drag is in progress, placing the mouse pointer close to (but inside) an edge of the window
should cause the window to scroll automatically in the appropriate direction. Scrolling is the
responsibility of the application that owns the destination window.

Releasing Select at the destination causes the selection to be copied or moved to the destination. If
the destination is within the same window, then the data should be moved, unless SHIFT is
held down, when the data should be copied instead. However, if the destination is a different
window, the sense of the SHIFT key should be reversed so that the default action is a copy.

2

8th October 1993Support Group Application Note No. 241, Issue 1.00

Support Group Application Note No. 240, Issue 1.00

While the selection is being dragged, the following message protocol is used to implement automatic
scrolling and ‘ghost caret’ positioning:

 Message_Dragging (17)
 0 message size
 4 task handle of task performing the drag
 8 message id
 12 your_ref (0)
 16 Message_Dragging
 20 window handle
 24 icon handle
 28 x
 32 y
 36 flags:
 bit 1 set => sending data from selection
 bit 2 set => sending data from clipboard
 bit 3 set => source data will be deleted
 bit 4 set => do NOT claim this message
 all other bits reserved (must be 0)
 40 x0, y0, x1, y1: bounding box of data relative to the pointer,
 in 1/72000“ (not scaled according to the zoom factors of the source window)
 x0 > x1 => source data size unknown
 56 list of filetypes in sender’s order of preference,
 terminated by -1

 Message_DragClaim (18)
 0 message size
 4 task handle of task replying to Message_Dragging
 8 message id
 12 your_ref (message id of the Message_Dragging received)
 16 Message_DragClaim
 20 flags:
 bit 0 set => pointer shape has been changed
 bit 1 set => remove wimp dragbox
 bit 3 set => source data should be deleted
 all other bits reserved (must be 0)
 24 list of filetypes in receiver’s order of preference,
 terminated by -1

All messages are sent using type 18 (reply required), and the 'your_ref' field of each message is set to the
message id of that to which it is replying, unless otherwise stated.

During the drag, the dragging task enables null events using Wimp_PollIdle with a minimum return time of
about 0.25 second. On each null event, it finds the current mouse position using Wimp_GetPointerInfo. It
then constructs the message block for Message_Dragging using the information gleaned.

If no task has claimed control of the pointer (as none has at the start), the message is sent to the owner of the
window/icon pair returned by Wimp_GetPointerInfo.

If the dragging task receives a Message_DragClaim in reply, it stores the task / your_ref / flags of the
message to indicate that the given task has claimed the drag process.

3

8th October 1993Support Group Application Note No. 241, Issue 1.00

Support Group Application Note No. 240, Issue 1.00

On the next null event, if the drag has been claimed, the Message_Dragging is sent to the claimant (with
your_ref set as appropriate), otherwise it is sent to the window/icon pair returned by Wimp_GetPointerInfo
as before.

If the Message_Dragging bounces (note that a DragClaim reply is required for each Message_Dragging that
is sent), and the drag was being claimed, the record of the claimant is reset and the Message_Dragging is
resent, this time to the window/icon pair (with a your_ref of 0).

The claimant will normally only claim the drag again if the pointer is still within its window, but it may
continue if it has started auto-scrolling. If bit 4 of the flags in the Message_Dragging is set, the claimant
MUST relinquish the drag, since this indicates that the sender is terminating the drag process.

When the drag terminates, the dragging task sets a flag and calls the null event code once more (to ensure
that the mouse position is up-to-date). This results in a Message_Dragging being sent, either to the claimant
or to the window/icon pair under the pointer.

This will result in a DragClaim being returned, or the message bouncing. If the message bounces, and there
was a claimant, the Message_Dragging is resent, as for a null event.

However, if a DragClaim is received, or the Message_Dragging bounces and there is no claimant, then the
‘drag terminated’ flag is inspected, and if set, the data can finally be saved to the destination.

The sender is also responsible for detecting the user aborting the drag using Escape - in this case it should
set an internal ‘Aborted’ flag, call Wimp_DragBox with -1 to terminate the drag, and then proceed as for
drag finished, terminating the process just before the DataSave would have been sent.

The sender should keep a record of whether the pointer shape has been changed (ie. keep a copy of the last
set of DragClaim flags received), and reset the pointer shape whenever the ‘pointer altered’ bit changes
from a 1 to a 0. Thus if the other application first changes the pointer shape, sending a DragClaim with
flags bit 0 set, then next time does not wish to change the pointer shape, but nevertheless wants to keep the
drag, it will send a DragClaim with flags bit 0 clear, so the sender should reset the pointer shape.

The ‘remove wimp dragbox’ flag works slightly differently - since the receiver is not allowed to alter the
wimp dragbox, it should instead ask the sender to do this by setting bit 1 of the DragClaim message. If at
some later time a DragClaim is sent without this bit set, or the Message_Dragging bounces, the sender
should restore the wimp dragbox. It should do this by calling Wimp_DragBox again with the appropriate
drag type.

The bounding box in internal units allows the receiver to display the exact position of where the data will be
placed if the mouse button is released, and is an exact analogy of the ghost caret for text. The receiver
should display the box exactly where the data would go, i.e. corrected for grid alignment, snap to frames
etc.

Note that sometimes the sender does not know the bounding box of the data, or sometimes the concept may
be meaningless (e.g. for text transfer). In this case the bounding box in the Message_Dragging should be
set so that x0 > x1, and the receiver should check for this and not use a box to display the position of the
data (although it may still use a ghost caret if appropriate). The Wimp drag box should be used if the
receiver has no way to display the destination position.

Bit 3 of the DragClaim message can be set to indicate that the sender should delete the source data even if
the user did not press the Shift key. This option could be used by a trashcan application, so that objects

4

8th October 1993Support Group Application Note No. 241, Issue 1.00

Support Group Application Note No. 240, Issue 1.00

dragged to it are simply deleted.

When the sender finally comes to save the data, it should send in its own preferred format, unless a
DragClaim is in force and the sender can do one of the the filetypes in the list returned. If so, it must do the
first one in the list that it can.

Before sending the data, the sender should now reset the pointer shape to the default if the claimant’s last
DragClaim had the ‘pointer shape altered‘ flag set.

The normal Message_DataSave protocol is used, except that the your_ref of the Message_DataSave is set to
0 if there was no claimant, and to the stored claimant’s last DragClaim message id otherwise.

Thus the receiver of the Message_DataSave knows whether to alter the insertion point according to the x,y
position indicated, and whether the ‘ghost caret’ needs to be removed from view.

In summary, the two tasks should behave as follows:

Sender:
 start:
 call Wimp_DragBox to start the drag, and enable null events every 0.25s
 set claimant to ‘none’
 set drag_finished to ‘false’
 set drag_aborted to ‘false’
 set lastref to 'none'

 null event:
 read mouse position and construct Message_Dragging
 if claimant
 send message (18) to claimant (your_ref = lastref)
 else
 send message (17/18) to window/icon pair (your_ref = 0)
 endif

 escape pressed:
 set drag_aborted to ‘true’
 call Wimp_DragBox with -1 to terminate the drag
 proceed as for drag finished

 drag finished:
 set drag_finished to ‘true’, then call null event code

 Message_DragClaim received:
 if drag_finished
 reset pointer shape if claimant altered it
 unless drag_aborted send data to claimant (your_ref = my_ref of DragClaim)
 else
 reset pointer shape if (old_flags and not new_flags) has bit 0 set
 set claimant to task handle of DragClaim message
 set lastref to my_ref of DragClaim message
 endif

5

8th October 1993Support Group Application Note No. 241, Issue 1.00

Support Group Application Note No. 240, Issue 1.00

Message_Dragging bounced:
 if claimant is not 'none'
 reset pointer shape if claimant altered it
 set claimant to ‘none’
 resend message to window/icon pair (type 17/18)
 else
 if drag_finished
 unless drag_aborted send data to window/icon pair (your_ref = 0)
 endif
 endif

 ‘17/18’ means ‘if drag_finished, send as type 18, else as type 17’.
 bit 4 of any Message_Dragging sent is set if drag_aborted is true.

Receiver:
 start:
 set claiming to ‘false’
 set pointer_altered to ‘false’

 Message_Dragging received:
 if claiming,
 if flags bit 4 clear, and we’re auto-scrolling or in a text area
 reply with Message_DragClaim (type 17)
 perform auto-scroll if required
 update ghost caret if required
 else
 set claiming to 'false'
 undraw ghost caret if necessary
 don’t reply to message
 endif
 else
 if flags bit 4 clear
 if we’re in the auto-scroll area
 change pointer shape to indicate auto-scroll
 set timer for auto-scroll
 set pointer_altered to ‘true’
 reply with Message_DragClaim (type 17)
 elseif we’re in a text area
 draw ghost caret in correct place
 set pointer_altered to ‘false’
 reply with Message_DragClaim (type 17)
 endif
 endif
 endif

6

8th October 1993Support Group Application Note No. 241, Issue 1.00

Support Group Application Note No. 240, Issue 1.00

Message_DataSave received:
 if your_ref indicates we’re claiming:
 if ghost caret is set up
 set insertion point to ghost caret
 undraw ghost caret
 endif
 endif
 import data to insertion point

All Message_DragClaim messages are sent with bit 0 of the flags indicating the current value of the
‘pointer_altered’ flag.

7

8th October 1993Support Group Application Note No. 241, Issue 1.00

Support Group Application Note No. 240, Issue 1.00

